

Missouri Spring Freeze Event and Crop Loss Analysis for the Years 1982-2015

Mirza Maswood¹, Ali Koleiny⁴, Scott Nickell¹, Laura Wymer², Ronald Morris³, Majid Bani-Yaghoub³, and Jimmy Adegoke⁴

¹School of Computing & Engineering

University of Missouri – Kansas City

5110 Rockhill Road, Kansas City, MO 64110

²School of Biological Sciences

University of Missouri – Kansas City

5007 Rockhill Road, Kansas City, Missouri 64110

³Department of Mathematics & Statistics

University of Missouri–Kansas City,

5100 Rockhill Road, Kansas City, MO 64110

⁴Department of Geosciences

University of Missouri—Kansas City,

5110 Rockhill Road, Kansas City, Missouri 64110

Corresponding Author: akgv7@mail.umkc.edu

28

29

30 A spring freeze is an unexpected freeze event occurring in late spring that can result in severe
31 domestic crop loss. These events coincide with seasonal conditions that promote early crop
32 development. As a consequence, early growth is most susceptible to freeze damage. Spring
33 temperature fluctuations pose significant crop yield and growth harm, when compared to
34 consistently cold springtime temperatures. In testing a hypothesis of correlations, a thirty-four-
35 year span from 1982 to 2015 of historical climate data and agricultural figures from each Missouri
36 County is examined. Risk analysis is performed for each county. Initial findings indicate a
37 relationship between crop loss and springtime warm-cold temperature fluctuation. Statewide,
38 several regions were identified with an increased susceptibility to freeze events. Lafayette County
39 emerged as the state's leading county in agricultural losses due to freeze events. The window for
40 peak freeze damage for Lafayette County is identified as the last week of March through the first
41 week of April. The years of 1985, 1996, and 2007 stand apart from the dataset as they correspond
42 to the highest crop damages on record. The spacing of these outlying years denotes approximately
43 eleven-year freeze event cycles. Each of these years also corresponds to a doubling of severity in
44 the reported crop losses. Based upon this occurrence cycle, it is possible that Missouri may suffer
45 drastic agricultural losses in 2018 due to spring freeze events.

46

47

48

49

50

51

52 **I. Introduction**

53 Late spring freezes are a devastating climate phenomenon because they strike a crop
54 during its most vulnerable growth cycle (Gu et al. 2008). The period of seasonal time for spring
55 freeze events is identified as late March through the first half of April. Some plant varieties are
56 capable of internal composition adjustments to improve survivability rates in freezing
57 temperatures. However, this mechanism alone is not efficient enough to protect crops from
58 damage caused by a freeze event's sudden and drastic climate alterations. Spring freeze events
59 require replanting affected crops in order to receive acceptable harvest yields. In addition to
60 replanting affected crops, freeze events have large extenuating implications beyond Missouri.
61 Affected crop yields in the state reach beyond regional economics and impact national sectors,
62 including market prices.

63 The presented research includes the following objectives:

64 1. Examination of each Missouri County's annual records for historical
65 climate and agricultural loss data from 1982 through 2015.

66 2. Analysis of daily climate datasets for springtime warm-cold temperature
67 fluctuations associated with historical spring freeze events.

68 3. Provide an overview of Missouri's most significant spring freeze years
69 during the thirty-four-year timeframe.

70 4. Determine what factors influence freeze event severity and analysis of
71 correlations between identified severity factors and any reported
72 agricultural and economic impacts.

73 5. Identification of the state's top risk counties for agricultural losses due to a
74 freeze occurrence, and identification of Missouri's most vulnerable
75 regions.

76 To better understand the impact of spring freezes upon Missouri agriculture, the 2007
77 Easter Freeze was examined alongside other annual warm-cold spring temperature fluctuation
78 patterns that resulted in substantial crop loss. Missouri crop loss data and the corresponding
79 insurance claims from spring freeze event(s) are then compared annually from 1982 through 2015.
80 Analysis of climate and crop loss data seeks to substantiate the hypothesis that if early warm spring
81 temperatures are succeeded by one or more freeze events, this type of freeze is most agriculturally
82 damaging. Outlined research initiatives seek to improve identification, understanding, and
83 mitigation of future spring freeze events and their associated impact. Utilizing spatio-temporal
84 crop loss and climate data, we examine freeze trends, seasonality, characteristics, and look for any
85 periodicity within Missouri's annual records. Better understanding of past spring freeze events can
86 serve to warn farming communities, policy makers, and reduce economic loss both in the Midwest
87 region and nationally.

88 **II. Background**

89 Freeze events are a national problem. Seven major freeze events resulted in domestic losses
90 totaling over a billion United States Dollars (USD). According to the National Centers for
91 Environmental Information (NCEI), a subset of the National Oceanic and Atmospheric
92 Administration (NOAA), these seven freeze events occurred respectively in 1983, 1985, 1989,
93 1990, 1998 and 2007 (twice). Reduced crop yields associated with events are felt in sectors that
94 range from national Gross Domestic Product (GDP), local and regional food security, and

95 ecological food chain. The time of occurrence and amount of loss due to these seven national
96 freeze events is presented in Table 1.

97 Most recently, during April 2007, a freeze event impacted a large swath of the U.S., including
98 Missouri farms and crops. This freeze, termed the 2007 Easter Freeze, occurred after an
99 unseasonably warm March prompted early crop growth. The 2007 Easter Freeze sparked
100 discussion about what factors made this event so unique, and how agriculture may better adjust to
101 survive potentially similar climate events. The Easter Freeze of 2007 was considered especially
102 devastating because the unseasonably warm March temperatures were succeeded by a dual
103 combination of an advective freeze and a radiational freeze event. Most commonly, a freeze event
104 is either *advective* or *radiational*, not typically a combination of both freeze types. Advective
105 freezing occurs when cold air is blown into an area by wind, and low temperatures are maintained
106 by cloud coverage. A radiational freeze, by comparison, occurs when there is low humidity, and
107 no cloud cover, thus allowing ground warmth to quickly escape upwards into the atmosphere
108 throughout the night (Warmund et al. 2008).

109 When considering how freezing temperatures impact plants, and the effect upon agricultural
110 crops, it's important to understand water within a plant's structure. Plant tissue consists of
111 approximately 85% water. When water molecules freeze, they form rigid hexagonal arrangements
112 in an orderly lattice pattern (Taiz et al. 2007). This crystalline formation not only changes the
113 rigidity of the water molecule but also increases its spatial volume by 9%. Thus, temperatures
114 reaching 32°F or below result in cell tissue expansion. This expansion ruptures the plant's
115 organelles and cell walls resulting in acute damage or whole plant death.

116 Some species of plants are categorized as winter hardy varieties. They possess a genetic
117 expression allowing them to acclimate to freezing temperatures and essentially survive varying

118 degrees of freezing temperatures. Winter hardy varieties adapt to gradual decreases in
119 temperatures and shortening of daylight hours by signaling an increased density of solutes into the
120 water portion of the cells. This solution freezes at a lower temperature than pure water and protects
121 plant tissue from cell ruptures during freezing. Pure water is pushed outside of cell walls and fills
122 the extracellular space where it may freeze, but not cause the same devastating of damage to the
123 individual cells' structures. During this process, cell walls also gradually become more durable by
124 changing the arrangement of lipids (Li et al. 1982).

125 Winter hardiness cycling consists of three process stages: (i) acclimation, (ii) winter-hardiness,
126 and (iii) de-acclimation. Acclimation is triggered by warm days and decreasing daylight hours and
127 usually begins in the months of August through September. Winter-hardiness, is a period of
128 dormancy where the plant is gradually able to withstand various low temperatures determined by
129 the plant's genes and current environmental adaptations. During the month of January, most plants
130 reach their full winter hardy potential. De-acclimation occurs when plants exit dormancy. This is
131 triggered by warming temperatures and increased daylight hours during March to April (Li et al.
132 1982).

133 The winter-hardiness cycle can be limited by several variables. Plant structures such as buds,
134 leaves, stems, root collar, and roots all have different hardiness ratings. Meaning different parts of
135 the plant's structure are more vulnerable to freezing temperatures than others. For instance, the
136 buds of a plant are far more susceptible to freeze damage than are the stems. Thus, the plant stage
137 of development at time of exposure to freezing temperatures determines the type of loss or damage
138 that will be incurred. Winter-hardy varieties can adapt in warmer climates resulting in the loss of
139 their ability to adjust to more severe temperatures, despite inherent genetic capabilities. Such that,
140 if a winter-hardy variety experiences an unseasonably warm winter it will not express the same

141 proper acclimation ability in withstanding freezing temperatures, and in the event of a subsequent
142 freeze, the plant will withstand damage (Burke et al. 1976). Once a plant enters de-acclimation, it
143 no longer has the ability to revert to winter-hardy until the full seasonal cycle has been completed.
144 Furthermore, de-acclimated plants who do survive a freeze event may produce a smaller yield
145 during harvest. Reduced plant yield is a result of the cold temperatures interacting with sensitive
146 plant hormones during the plant's sprouting phase. This sprouting phase is responsible for
147 determining yield potential (Striegler 2007). De-acclimation of a plant can be completed in as little
148 as 2-3 days. In the event of a sudden drop in temperatures after an unusually warm winter, such
149 as the Easter Freeze event of 2007, each plant will have already undergone de-acclimation.
150 Consequently, water inside of the plant cells freezes and ruptures both the cell wall and organelles
151 as it expands. Whole crops can be destroyed due to these extreme or unseasonable freezing events
152 (McMechan et al. 2016).

153 Several techniques can be used to mitigate freeze damage to plants and crops. Fans are used
154 to circulate warm air onto a field, or crop coverings may be used when plants are small enough to
155 accommodate such structures (Snyder 2000). Somewhat counter-intuitively, water sprayed on the
156 outside of the plant, with its high thermal capacity, can help insulate the interior of the plant from
157 the freezing temperature in the case of a light freeze. Furthermore, a growing industry for
158 genetically modified organisms (GMO's) pioneered by companies such as Monsanto, work to
159 create newer plant strains with enhanced survivability under freezing temperatures (Monsanto
160 2017).

161 **III. Materials and Method**

162 **1. Missouri Climate and Crop Loss Data**

163 Daily minimum temperature data from January 1, 1982 to July 31, 2014 for Layfayette County
164 was obtained and analyzed from the National Centers for Environmental Prediction-Climate
165 Forecast System Reanalysis (NCEP-CFSR) (Saha et al 2010). Crop loss data was collected directly
166 from the United States Department of Agriculture Risk Management Agency (USDA-RMA),
167 which contains the following categories for each Missouri County; insurance company payout for
168 various crop loss, including cause of crop loss and the indemnity loss. The indemnity loss amount
169 was then converted to reflect a loss total according to its corresponding 2016 USD amount. For
170 instance, the deflator index for 1980 is 44.377 and for 2016 it is 111.188 (Implicit Price Deflators
171 2008). It follows that 1.00 USD of 1980 is worth 2.51 USD of 2016, with numbers rounded to two
172 decimal places.

173 **2. Spatial and Temporal Data Analysis**

174 Let the Annual percentile loss due to freeze and the annual crop loss due to freeze in USD be x
175 and y respectively. Moreover, the total amount of crop loss due to freeze over the 34 years (1982-
176 2015) in USD is denoted using z . Eq. (1) corresponds to Figure 1(a) and 1(b).

177
$$x = \frac{y}{z} \times 100 \quad (1)$$

178 Next, Eq. (2) is used to determine Missouri's top five counties from 1982-2015 with the highest
179 crop loss due to a freeze event.

180
$$A = \frac{\sigma}{\tau} \times 100 \quad (2)$$

181 A is the annual percentile loss due to freeze in the top five counties, σ is the sum of annual
182 crop loss in the top five counties due to freeze in USD and τ is the total amount of crop loss due
183 to freeze in that year in corresponding USD amount. This formula is used to generate Figure 2,

184 which represents an annual percent loss for Missouri's top five counties. It can be seen the top five
185 counties constitute a substantial amount of loss in Missouri during 1985-1997, 2000, 2002 and
186 2005-2010 and 2015. Although Missouri's top loss counties vary annually in as seen in Table 3
187 for the thirty-four-year span of 1982 through 2015, certain counties emerged with substantially
188 more annual occurrences. Figure 4 represents the percentile crop loss due to freeze in Lafayette
189 County, Missouri, from 1982-2015. The following Eq. (3) was used to generate this figure.

190
$$A_L = \frac{C}{\epsilon} \times 100 \quad (3)$$

191 A_L is Annual percentile loss due to freeze in Lafayette County, C is the crop loss due to freeze
192 in USD and ϵ is the total amount of crop loss in that year in USD. Please note, all analyses were
193 conducted using USDA-RMA sourced Missouri crop loss data.

194 **III. Results and Discussion**

195 **1. Temporal Crop Loss Data Analysis**

196 Figure 1(a), Figure 1(b), and Table 2, analysis revealed the most significant freeze events
197 occurred in the years of 1985, 1992, 1995, 1996, 2000 and 2007, which result in total crop loss
198 figures of 2.02, 1.04, 1.37, 5.06, 2.65 and 10.4 million dollars respectively. These loss amounts
199 are reported through insurance company pay outs. When examining Missouri, we found that there
200 were several significantly more damaging freezes, as well as, many years with little or no freeze
201 loss.

202 Furthermore, the periodicity of 1985, 1996, and 2007 stand out in the 34-year data set span.
203 The spacing of these outlying extreme loss years seems to denote occurrence cycles with of
204 approximately eleven-year spans. In Figures 1(a) and 1(b) please note the severity of 2007 freeze
205 losses in comparison with the other event losses. The periodic eleven-year occurrence cycle

206 between these freeze events is further examined in Table 2. Table 2 also denotes another
207 interesting pattern emergence in which each periodic eleven-year occurrence corresponds to
208 doubling of loss severity for that freeze event. The significance is, that if such a trend continues,
209 the next potentially disastrous freeze event resulting in severe crop loss, may occur around 2018.

210 Table 3, illustrates the top five Missouri Counties with highest crop loss amounts due to freeze
211 from 1982 to 2015. The top five counties are Dunklin, Barton, Lafayette, Vernon and Audrain.
212 These counties are affected more frequently when compared to other counties for 13, 12, 18, 12,
213 and 13 years respectively during the thirty-four-year span. For each of the counties, maximum
214 freeze loss years are indicated alongside that year's reported agricultural losses.

215 When examining the number of counties affected by the freeze in a particular year, little
216 correlation to the total loss figures was found. However, extreme event years, such as 2007 have
217 the largest number of affected counties but more moderate years range from large swaths of
218 affected counties to a small pinpointed section of Missouri. Figure 2 represents percent crop loss
219 due to freeze in Missouri's top five counties. In certain years the percent crop loss due to freeze
220 exceeds 50%.

221 **2. Spatial Crop Loss Data Analysis**

222 From this analysis, it is observed that the freeze loss in top five counties totals \$10,614,620
223 USD and total freeze loss for all counties amounts to \$28,947,542 USD. Therefore, the top five
224 counties are responsible for 36.67% of the overall freeze loss in Missouri and thus these counties
225 have a high percentage in the overall freeze loss. It appears freeze loss in Missouri is
226 concentrated in certain areas. The counties responsible for 36.67% of Missouri's overall freeze

227 risk are therefore considered more vulnerable to freeze events. These vulnerable counties include
228 Dunklin, Barton, Lafayette, Vernon, and Audrain as outlined in Table 3.

229 Table 4 represents the top five annual Missouri counties with highest amount of freeze event
230 crop loss. Moreover, in 1983, 1987, 1999 and 2003 there have been less than five counties in
231 Missouri with insurance claims for crop loss due to freeze. Hence, in these years there have been
232 no significant crop loss due to spring freeze. Review of the annual reported top freeze loss
233 counties for Missouri can help identify larger vulnerable freeze regions within the state.

234 Figure 3 is then used to visualize the top five Missouri Counties with highest annual crop
235 loss due to freeze and how the locations of highest loss counties may have changed over time.
236 The central, southeast and western counties are identified as high risk regions for freeze events.
237 By contrast, other state counties have never ranked as a top five loss county during the past
238 thirty-four years. Figure 3 places an emphasis on the spatial diversity and patterns for the top five
239 freeze loss counties. The illustrated areas of Central Missouri, Southeast Missouri, and Western
240 Missouri are identified as at risk for spring freeze events, including being especially susceptible
241 in sustaining associated agricultural losses.

242
243 Table 5 represents the number of affected Missouri counties per year due to freeze from 1982
244 to 2015. From Table 5, the most significant years in terms of number of affected counties were
245 1985, 1992, 1995, 1996, 2005 and 2007. The respective number of affected counties in these years
246 are 36, 53, 51, 68, 38 and 77. Apart from 2005, these freeze years also directly correspond to the
247 largest reported freeze event losses in USD, illustrated in Table 2.

248 **3. Lafayette County Missouri Analysis**

249 Lafayette County appears incur spring freeze events more frequently than other Missouri
250 Counties examined from 1982-2015. From Figure 4, we can observe that freeze effects had an
251 adverse impact upon total crop loss for Lafayette County during 1990-1992, 1994-1996 and 2007.
252 Specifically, the corresponding insurance amounts paid due to spring freeze exceed \$10,000 in
253 years 1990, 1991, 1995, and 2007. Most other years have little to no crop loss, as freeze events do
254 not always occur during a vital stage of crop development. As anticipated, the four most damaging
255 freezes in Lafayette County are associated with spring freeze events which occur in the final days
256 of March into the first week of April.

257 In addition, the four freeze years of 1990, 1991, 1995, & 2007 constitute eighty-eight percent
258 of all total Lafayette County crop losses during thirty-four-year period. It is of note, that all four
259 of these freeze years also constitute late spring freeze events. A factor of a damaging spring freeze,
260 is the freeze event itself. All four marked years of Lafayette County's significant loss correspond
261 to a freeze event. These four freeze events also occurred at a time within the final week of March
262 and initial 10 days of April, in which, temperatures fell below -4.44°C , resulting in their
263 categorization as a severe freeze event (Walter et al. 1988, section: C, page: I4). It is possible to
264 conclude that freeze events cause agricultural damage, and a narrow seasonal window emerges in
265 late spring where a freeze event can cause devastating crop loss. Research in Lafayette County
266 identified the following:

267 a. For 1982-2015, Lafayette appeared nine times within yearly top five counties in the
268 amount of crop loss, accounting for about 28% of the thirty-four-year span examined.

269 b. Lafayette ranks third among Missouri counties for total amount of crop loss reported
270 during 1982-2015.

271 c. Lafayette County is affected by freeze events for eighteen years which is maximum
272 among the top five counties with the highest crop loss.

273 One way to lend additional credence to the proposal of a small window for increased crop loss
274 risk is a correlation analysis (Hansen et al. 1998). By weighting the severity of the freeze on a day
275 using a standard of light, mild (between 0 to -1.66°C), moderate (between -1.66°C to -4.44°C), and
276 severe (below -4.44°C) freezes summed together from late March through early April are
277 compared against crop loss for each year across the 34-year data set. Correlation analysis between
278 the crop loss data set and a weighted minimum daily temperature (late March through early April)
279 gives a correlation of 0.57.

280 The second factor or sign of damaging freeze events, which all four crop loss events also have
281 in common, is a warm period prior to the freeze event (Wolf 2007). When examining the
282 temperatures leading up to the freeze, it is apparent that temperature is significantly higher than
283 normal across much of the preceding month. This is evident in Lafayette County as well. As shown
284 in Figure 5, in all years with significant crop loss due to freeze, there has been an unusual warm
285 period before the severe freeze event in late March or early April. Moreover, in Table 6 it is
286 observed that the length of the warm period prior to the freeze event connects to a corresponding
287 increase in reported crop loss.

288 **IV. Conclusion**

289 In the present work, climate and crop loss data for Missouri was analyzed from 1982 to 2015.
290 Thus far, data analysis confirms the Easter freeze of 2007 was especially devastating due to
291 unseasonably warm March temperatures, followed in combination by both a radiational freeze and
292 an advective freeze.

293 Further, regions in Missouri with high risk of crop loss due to spring freeze events were
294 identified. There is a need to pay special attention towards counties in these regions to cut down
295 figure losses as a result of spring freeze events. The central, southeastern, and western regions of
296 Missouri are identified as most vulnerable to spring freeze event occurrence. The top-ranking
297 Missouri counties for freeze crop loss are Audrain, Barton, Dunklin, Lafayette, and Vernon.
298 During this period Lafayette County appears nine times in the top five counties for total crop loss,
299 accounting for approximately 28% of the thirty-four years examined. Further analysis of Lafayette
300 County revealed a total of eighteen years impacted by freeze events, representing a maximum
301 among top five counties with highest crop loss. The years of 1990, 1991, 1995, and 2007 constitute
302 eighty-eight percent of Lafayette County's total freeze loss during 1982-2015. These years include
303 an unusual period of warm temperatures.

304 In Lafayette County, the length of the warm period prior to a freeze event was observed to
305 impact the corresponding crop losses. For instance, years 1990 and 2007 are similar in their
306 respective number of cold days and temperature sum. However, of these two years, 2007 bears a
307 marked warm period extension from 18 to 30 days in length, as well as a drastic increase in total
308 crop losses reported from \$100,907 in 1990 to \$1,416,597 for 2007. In observing a plant's response
309 to warm period durations, a direct relationship can be inferred from the length of a warm period
310 and potential freeze damage. The longer the duration of a warm period the more likely a plant is
311 to have undergone de-acclimation, or possess vulnerable growth such as bud formation. Spring
312 freeze events coincide within initial growth periods for many food crops, consequently these
313 events produce both susceptibility and occurrence concerns for agricultural production. If early
314 warm spring temperatures are succeeded by one or more freeze events, this type of freeze is most
315 agriculturally damaging.

316 The analysis also revealed patterns of occurrence during freeze crop losses. This emerges in
317 examining the insurance claims filed. Over the thirty-four-year span of the dataset, insurance
318 claims for freeze loss are distributed unevenly. Many years amount to little loss, while others result
319 in steep spikes in reported amounts of freeze loss and corresponding insurance claims. A
320 chronological cycle emerged when examining the freeze years that resulted in the most drastic
321 crop related insurance losses. The most severe years of freezing and crop loss are spaced for
322 occurrence approximately once every eleven years. These severe freeze years are 1985, 1996, and
323 2007. The research also denotes a second alarming pattern within Missouri's most severe spring
324 freeze years and the maximums in reported agricultural losses. Reported losses double from the
325 1985 to 1996 spring freezes, and then double again for the 1996 to 2007 events. Meaning that in
326 Missouri, significant spring freeze events occur on an eleven-year cycle, and each of these
327 significant events corresponds to a doubling in reported agricultural damages. This eleven-year
328 occurrence cycle for significant spring freeze events and loss reports is reflected in Table 2, where
329 for 1985 total crop loss is \$2.02 million dollars, followed by 1996 with \$5.06 million, and 2007
330 with \$10.4 million in crop loss. Our findings indicate that the next significant spring freeze event
331 for Missouri may occur during 2018.

332 Future considerations include examination of other significant freezes outside of Missouri or
333 the 1982-2015 timeline to determine if they were also affected by a combination of both advective
334 and radiational freeze type events. Further review and analysis of significant freeze events
335 produced by singular freeze events that lack a preceding warm period can perhaps identify and aid
336 in predicting the event's severity.

337 Understanding the compounding effect of a warm March followed by a freeze can allow
338 farmers to properly plan for an increase of significant freeze damage for those years. Additional
339 research could be used to define a freeze-related agro-climate metric, which could then be modeled
340 to determine how the frequency of the metric changes from a past state to a future state. This
341 metric could prove helpful to the farming community, as it would likely be helpful to inform
342 farmers on when they should plant certain crops locally and regionally. This would certainly help
343 to mitigate the negative impacts for future spring freeze events, such that it could improve
344 agricultural anticipation regarding optimal plantation and seeding times.

345

346

347

348

349

350

351

352

353

354

Acknowledgments

355 We would like to thank and acknowledge the following for their support of this work.

356 1. University of Missouri-Kansas City Faculty for Excellence Program, FFE NV KDW34.

357

358 2. National Science Foundation Grant 1355406, awarded to Jimmy Adegoke.

359

360

361

362

363

364

365

366

367

368

369

370

References

371 Areppim AG, 2008: Areppim: information, pure and simple. Accessed 04 April 2016.
372 http://stats.areppim.com/glossaire/gdp_def.htm#deflator.

373 Burke, M. J., Gusta, L. V., Quamme, H. A., Weiser, C. J., & Li, P. H., 1976: Freezing and injury
374 in plants. *Annual Review of Plant Physiology*, **27**, 1, 507-528.

375 Centinari, M., 2016: Understanding and preventing spring frost/freeze damage-Spring 2016
376 updates. Accessed 13 November 2016,
377 <https://psuwineandgrapes.wordpress.com/2016/04/08/understanding-and-preventing-spring-frostfreeze-damage-spring-2016-updates/>.

379 Gu, L., Hanson, P. J., Mac Post, W., Kaiser, D. P., Yang, B., Nemani, R., Pallardy, S. G., &
380 Meyers, T., 2008: The 2007 eastern US spring freeze: increased cold damage in a warming
381 world. *BioScience*, **58**, 3, 253-262.

382 Hansen, J. W., Hodges, A. W., & Jones, J. W., 1998: ENSO influences on agriculture in the
383 southeastern United States. *Journal of Climate*, **11**, 3, 404-411.

384 Li, P.H., and Sakai, A., 1982, *Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop
385 Implications, Volume 2*, Academic Press, 694 pp.

386 McMechan, J., and Elmore, R., 2016: Nebraska Corn: Risk of Freeze Damage If You Plant Too
387 Early. AGFAX, accessed 25 July 2016, <http://agfax.com/2016/04/20/nebraska-corn-risk-of-freeze-damage-if-you-plant-too-early/>.

389 Monsanto, 2017: Biotechnology and GMOs. Accessed 12 February 2017,
390 <https://monsanto.com/innovations/biotech-gmos/>.

391 NOAA National Centers for Environmental Information (NCEI), 2017: US Billion-Dollar
392 Weather and Climate Disasters. Accessed 2 January 2017,
393 <https://www.ncdc.noaa.gov/billions/events/US/1980-2017>.

394 Saha, S., and Coauthors, 2010. Climate Forecast System Reanalysis (CFSR). National Centers
395 for Environmental Prediction (NCEP). Accessed 18 February 2016.
396 <https://globalweather.tamu.edu/>.

397

398 Snyder, R., L., 2000: Principles of Frost Protection. University of California-Davis, accessed 17
399 July 2015,
400 <http://biomet.ucdavis.edu/frostprotection/Principles%20of%20Frost%20Protection/FP005.html>.
401

402 Striegler, R. K., Allen A., Bergmeier E., 2007: The Easter Freeze of 2007: Extent of Damage and
403 Strategies for Managing Freeze-Injured Vineyards. University of Missouri-Columbia
404 Grape and Wine Institute, Accessed 20 July 2016.

405 Taiz, L., and Zeiger, E, 2007: Plant Cells. *Plant Physiology*, Sinauer Associated, Inc., 764 pp.

406 The United States Department of Agriculture Risk Management Agency, Cause of Loss Historical
407 Data Files, Indemnities Only, Indemnities with Month of Loss. United States Department
408 of Agriculture, Accessed 04 April 2016, <http://www.rma.usda.gov/data/cause.html>.

409 Warmund, M. R., Guinan, P., & Fernandez, G., 2008. Temperatures and cold damage to small
410 fruit crops across the eastern United States associated with the April 2007
411 freeze. *HortScience*, **43**, 6, 1643-1647.

412 Wolf, Ray, 2007: The Easter freeze of April 2007: A climatological perspective and assessment
413 of impacts and services. NOAA/USDA Technical Report 2008-01, 56 pp,
414 <https://www1.ncdc.noaa.gov/pub/data/techrpts/tr200801/tech-report-200801.pdf>.

415

416

417

418

419

420

421

422

Tables

423 **Table 1:** Seven Major U.S. Freeze Events since 1983; Each Exceeding 1.5 Billion Dollars in
 424 Domestic Crop Loss (<https://www.ncdc.noaa.gov/billions/events/US/1982-2015>)

425

Date	Loss (USD Billions)	States Affected	Damaged Plants
April 4, 2007, to April 10, 2007	\$2.4	Mostly Alabama, Arkansas, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Mississippi, Missouri, Nebraska, North Carolina, Ohio, Oklahoma, South Carolina, Tennessee, Virginia, and West Virginia.	Fruit crops and field crops (especially wheat)
January 11, 2007, to January 17, 2007	\$1.6	California	Numerous agricultural crops such as citrus, berry, and vegetables
December 20, 1998, to December 28, 1998	\$3.7	Majorly the Central and Southern San Joaquin Valley of California	Different fruits and vegetables
December 18, 1990, to December 25, 1990	\$6.3	Majorly the Central and Southern San Joaquin Valley of California	Mainly citrus and avocado trees
December 23, 1989, to December 25, 1989	\$3.9	Central and northern Florida	Citrus crops
January 20, 1985, to January 22, 1985	\$2.7	Central and northern Florida	Mostly citrus crops
December 15, 1983, to December 25, 1983	\$4.9	Central and northern Florida	Citrus crops

426

427

428 **Table 2:** Missouri's most significant years of freeze damage losses (1982-2015)

429

Year	1985	1992	1995	1996	2000	2007

Crop loss (USD/Millions)	2.02	1.04	1.37	5.06	2.65	10.4
---------------------------------	------	------	------	------	------	------

430

431 **Table 3:** Missouri's top five freeze loss counties and years of maximum crop loss (1982-2015)

432

Audrain County, Total Loss: \$1,346,595

Year	1986	1988	1989	1990	1992	1995	1996
Crop Loss (USD)	47,010	8,894	37,512	14,703	28,776	89,819	940,315
Year	1997	2002	2007	2008	2009	2014	
Crop Loss (USD)	7,006	5,840	137,701	712	7,984	20,323	

433

Vernon County, Total Loss: \$1,524,733

Year	1986	1989	1991	1995	1996	2000
Crop Loss (USD)	2,121	10,427	1,836	23,477	86,720	711,982
Year	2001	2004	2005	2007	2010	2014
Crop Loss (USD)	1,843	3,860	2,795	664,217	5,637	9,818

434

Lafayette County, Total Loss: \$2,291,730

Year	1985	1986	1989	1990	1991	1992
Crop Loss (USD)	6,976	5,985	56,106	100,907	143,012	48,378
Year	1993	1994	1995	1996	1997	2001
Crop Loss (USD)	6,444	61,010	357,675	69,298	1,644	383
Year	2005	2006	2007	2008	2009	2014
Crop Loss (USD)	6,873	964	1,416,597	4,322	4,799	357

435

Barton County, Total Loss: \$2,596,593

Year	1984	1985	1987	1993	1994	1995
Crop Loss (USD)	2,914	67,800	1,053	42,886	3,400	823
Year	1996	2000	2001	2002	2007	2008
Crop Loss (USD)	55,786	1,019,166	364	4,905	1,356,578	40,918

436

Dunklin County, Total Loss: \$2,854,969

Year	1982	1984	1985	1986	1989	1990	1991
Crop Loss (USD)	777	1,838	1,340,196	33,813	115,496	150,071	7,364

Year	1992	1993	1994	1996	2007	2014	
<i>Crop Loss (USD)</i>	19,197	3,715	53,910	28,153	1,051,471	48,968	

437 *Note: The numbers in bold face indicate the maximum loss and year in each county.*

438
439
440

Table 4: Annual top five Missouri counties with highest freeze event crop loss (1982-2015)

1982	Mississippi	Ripley	Franklin	New Madrid	Callaway
1983	Platte	Butler	Franklin	X	X
1984	Howard	Stoddard	Mercer	Pemiscot	Lewis
1985	Dunklin	Henry	Linn	Chariton	Barton
1986	Moniteau	Bates	Cooper	Audrain	Pettis
1987	Bates	Barton	Gentry	X	X
1988	Audrain	Mercer	Monroe	Shelby	Knox
1989	Montgomery	Dunkin	Lafayette	Warren	Audrain
1990	Dunklin	Lafayette	Scott	Monroe	Jackson
1991	Lafayette	Saline	Sullivan	Howard	Pemiscot
1992	Pemiscot	Marion	Callaway	Montgomery	Lafayette
1993	St. Louis	Barton	Jasper	Carroll	Lafayette
1994	Lafayette	Dunklin	Howard	Carroll	Cooper
1995	Lafayette	Lewis	Audrain	Cass	Callaway
1996	Audrain	Callaway	Cooper	Montgomery	Saline
1997	Audrain	Franklin	Adair	Lafayette	Warren
1998	New Madrid	Mississippi	Scott	Pettis	Andrew
1999	Carrol	X	X	X	X
2000	Barton	Vernon	Bates	Jasper	Scott
2001	Jasper	Pemiscot	Chariton	Cass	Lawrence
2002	Audrain	Barton	Clinton	Shelby	Moniteau
2003	Cooper	Pettis	X	X	X
2004	Pemiscot	Pettis	Lewis	Johnson	Randolph
2005	Ray	New Madrid	Johnson	Andrew	Scotland
2006	Dade	Gentry	Moniteau	Saline	Cass
2007	Lafayette	Barton	Dunklin	Vernon	Jasper
2008	Mercer	Livingston	Jackson	Barton	Cooper
2009	De Kalb	Knox	Mercer	Scotland	Clark
2010	Pettis	Bates	Cooper	Henry	Johnson
2011	Henry	Clark	Knox	Howard	Pettis
2012	Warren	Lincoln	Saline	Moniteau	Carroll
2013	Jasper	Randolph	New Madrid	Henry	Gasconade
2014	Lawrence	Grundy	Linn	Lincoln	Dunklin
2015	Livingston	Bates	Montgomery	Callaway	Mercer

441 *Note: 'X' is used to indicate that less than 5 counties were affected in those specific years.*

442

443

444

445

446 **Table 5:** Number of Missouri counties (NC) affected per year due to freeze (1982-2015)

Year	NC	Year	NC
1982	10	1999	1
1983	3	2000	13
1984	26	2001	25
1985	36	2002	8
1986	26	2003	2
1987	3	2004	14
1988	6	2005	38
1989	31	2006	7
1990	19	2007	77
1991	17	2008	21
1992	53	2009	24
1993	11	2010	16
1994	13	2011	7
1995	51	2012	5
1996	68	2013	11
1997	10	2014	35
1998	8	2015	11

447

448

449

450

451

452

453

454

455

456

457 **Table 6:** Lafayette County's highest freeze loss years with accompanying warm-cold
 458 temperature periods

Year	1990	1991	1995	2007
Recorded Dates of Warm Period	March 5 th - 22 nd	March 9 th - 27 th	March 10th -29 th	March 5 th – April 3 rd
Period's Number of Warm Days	18	19	20	30
Sum Average Daily Temp. (°C)	130.05°	113.35°	145.63°	264.62°
Recorded Dates of Cold Period	March 23 rd - 27 th	March 28 th - 30 th	March 30 th -31 st	April 4 th -9 th
Period's Number of Cold Days	5	3	2	6
Sum Average Daily Temp. (°C)	-28.19°	-6.04°	-4.49°	-28.02°
Recorded Crop Loss (USD)	\$100,907	\$143,012	\$357,675	\$1,416,597

459 *Note: Temperature rows represent a sum of the average daily temperatures in Celsius. Warm
 460 patterns seem to demonstrate a stronger influence on the crop loss; when compared to the
 461 number of total days and degree sum of average daily temperatures (Celsius).*

462

463

464

465

466

467

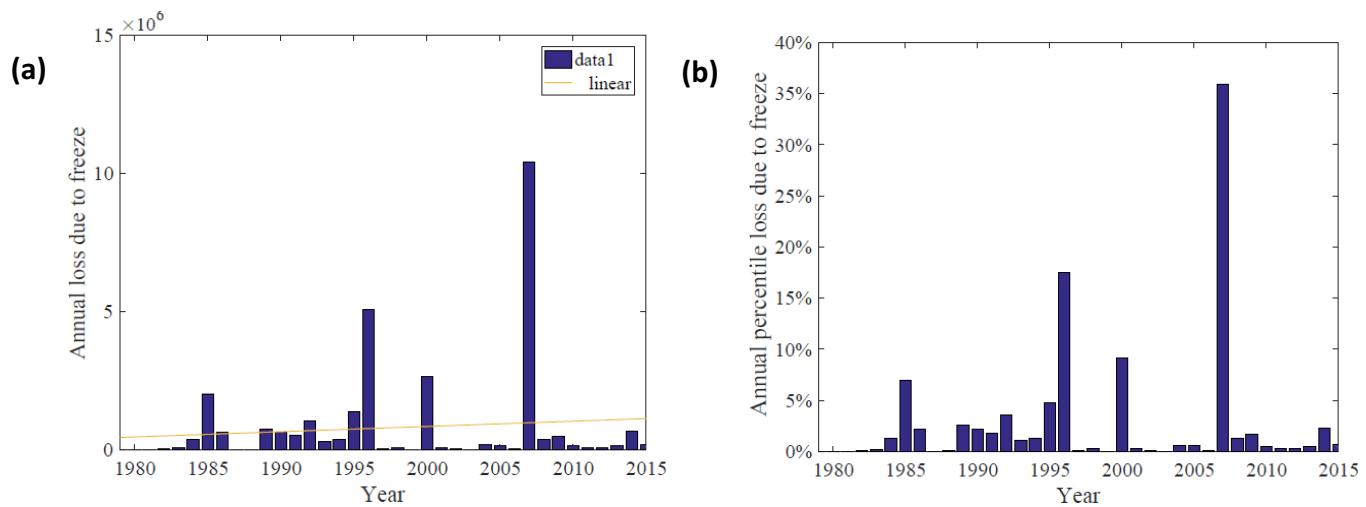
468

469

470

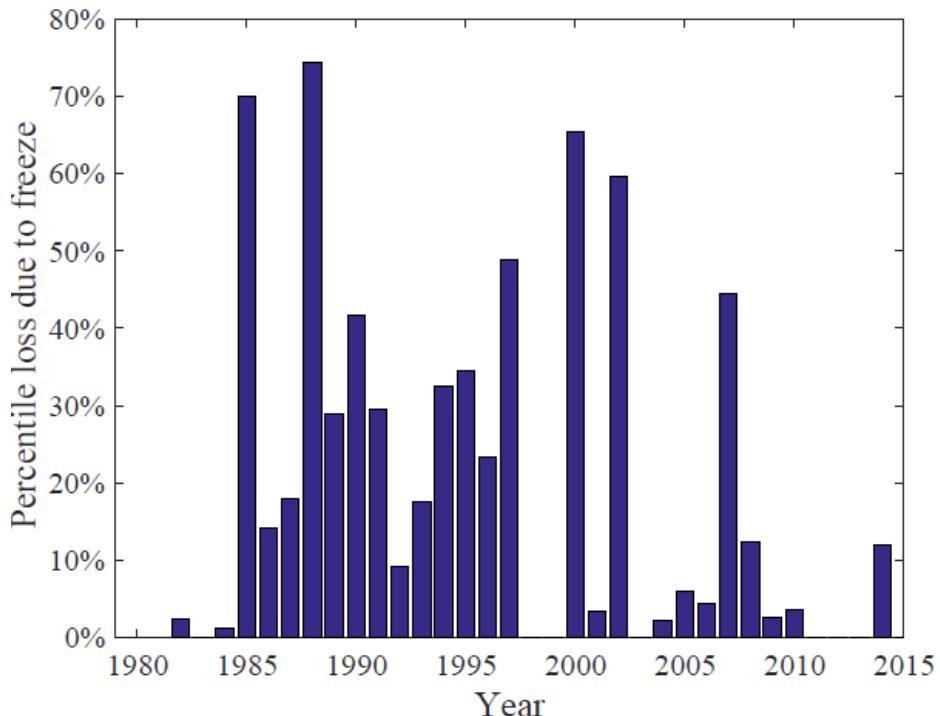
471

472

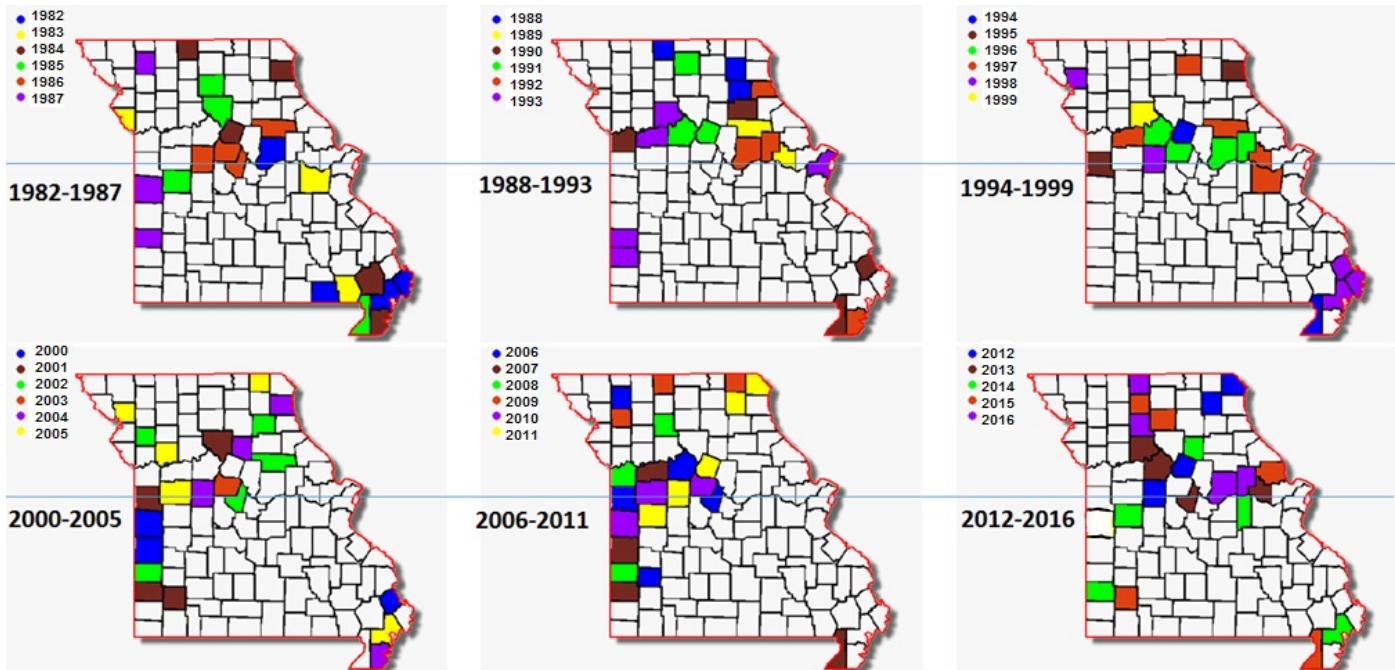

473

474

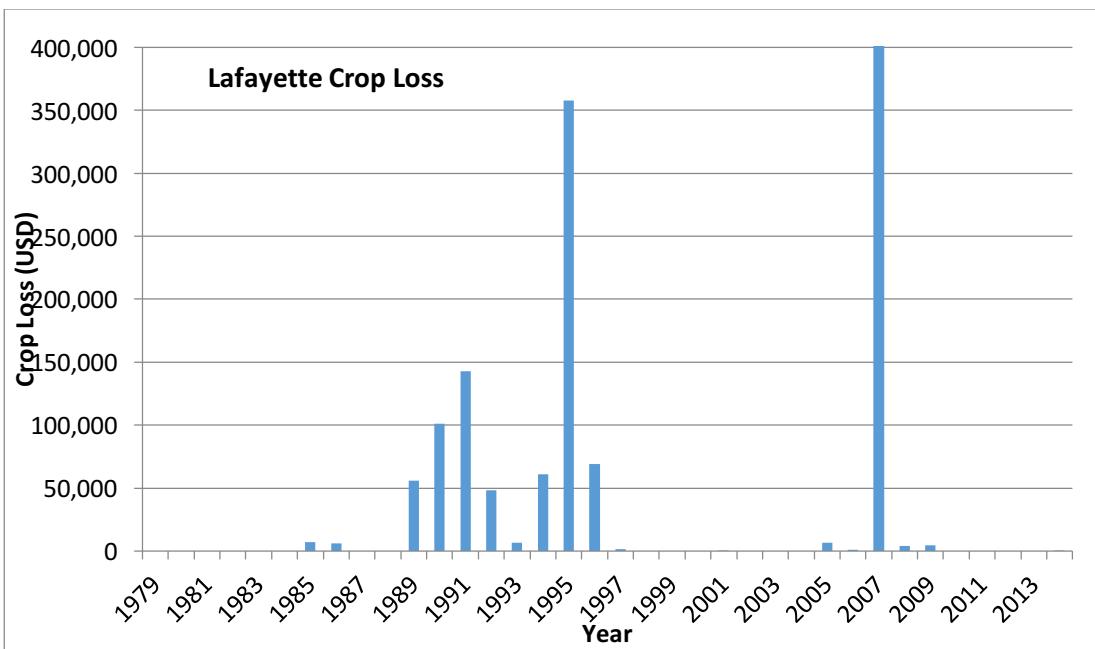
475


Figures

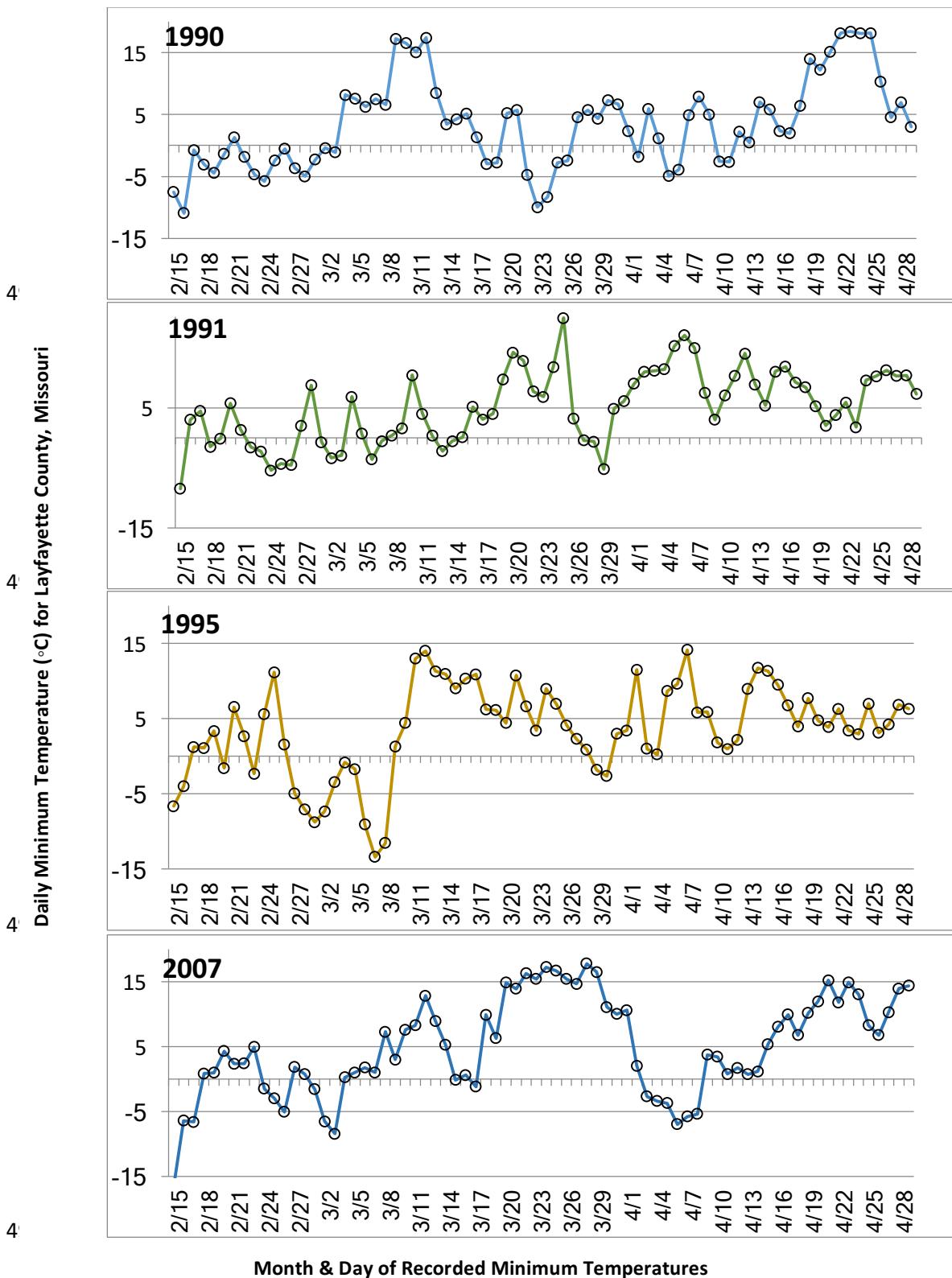
476


477 **Figure 1(a) & Figure 1(b):** Crop loss in Missouri due to spring freeze (a) Annual loss in dollars
478 due to freeze from 1979 to 2015; the solid line represents the regression line fitted to the data (b)
479 annual percentile loss due to freeze for each year from 1979 to 2015.

480


481

482 **Figure 2:** Annual percentile loss for top five Missouri counties with highest amount of crop loss
 483 due to freeze (1979 to 2015).



484
 485
 486
 487

488 **Figure 3:** Mapping of vulnerable Missouri freeze regions. Illustrated by annual top five Missouri crop loss counties 1982-2015. Note: Horizontal lines are provided for better visualization of affected counties.

489
490 **Figure 4:** Crop loss due to freeze per year in Lafayette County, Missouri with dollar amount
491 adjusted to the year 2016. *2007 is truncated due to the large crop loss value.
492

497 **Figure 5:** In the years 1990, 1991, 1995 and 2007, the crop loss in Lafayette County is much
 498 higher than in other years. The patterns of warm-cold temperature fluctuations have frequently
 499 occurred in these years and the crop loss is correlated with these patterns (*correlation r = 0.57*).