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Abstract—With the increasing dependency of cloud-based
services, data centers (DC) have become a popular platform
to satisfy customers’ requests. Many large network providers
now have their own geographically distributed data centers for
cloud services, or have partnerships with third party data center
providers to route customers’ demand. When end customers’
requests arrive at a Point-of-Presence (PoP) of a large Internet
Service Provider, the provider having DCs in multiple geo-
locations needs to decide which DC should serve the request
depending on the geo-distance, cost of resources in that DC,
availability of the requested resource at that DC, and congestion
in the path from the customers’ location to that DC. Therefore,
an optimal connectivity scheme from the ingress PoP to egress
DC is required among the PoPs and DCs to minimize the cost of
establishing paths between a PoP and a DC while ensuring load
balancing in both the link level and DC level. In this paper, we
present a novel mix-integer linear programming (MILP) model
for this problem. We show the efficacy of our model through
various performance metrics such as average and maximum link
utilization, and average number of links used per path.

Index Terms—Cloud Data Centers, Point of Presence, Resource
Optimization and Allocation, Load Balancing

I. INTRODUCTION

To satisfy the growing need for cloud-based services such
as video streaming, web search, scientific computation, and
distributed file system, the size and the number of data
centers (DC) are increasing with time. The major cloud
service providers like Google, Amazon, and Microsoft have
established new data centers throughout the world to offer
multiple service regions through geographically distributed
data centers to attain a lower cost, lower delay, and higher
availability for globally distributed cloud users. For example,
Google currently has 9 data centers in the US, 2 in Asia, and

4 in Europe to serve customers throughout the world [1].
Internet Service Providers (ISPs) create a bridge between

the customers at the edge and the data centers of the cloud
service providers; in some instances, ISPs have their own
data centers that are geographically distributed. Typically,
a nationwide ISP has Points-of-Presence (PoPs) in every
geographic region wherever it has a partnership with a local
access provider. Thus, an important problem such an ISP faces
is to route requests entering at an egress PoP to a destination
DC. The goal of Traffic Engineering (TE) among the PoPs of
the ISPs and the data centers is to ensure efficient routing to

optimize network and service objectives.
To provide the optimal connectivity from the PoPs to differ-

ent geo-distributed DCs is a challenging problem for providers.
A number of works already addressed how to reduce the intra-
DC cost by either better utilizing the server resources or by
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applying traffic engineering techniques to reduce bandwidth
and other operational costs [2], [3]. However, less work has
been done to reduce cost, address link congestion and data
canter load balancing using traffic engineering techniques for

requests between PoPs and DCs.
The novel contribution of this work beyond the state-of-

the-art in terms of the optimal provisioning on the cloud
environment is our proposed novel optimization MILP-based
model to minimize a composite objective that consists of
minimizing the routing cost from a PoP to a DC as well as
load balancing both at the network level and the DC level.
An important point to note here is that we use two types
of resources in our approach: network resources (bandwidth)
and DC resources. Thus, our model is a unified model on
resource optimization between the network and the DC. By
conducting a series of systematic studies using different values
of the weight factors associated with the composite objective,
we present how the average link utilization, maximum link
utilization, and the average number of links interplay under
different conditions. Furthermore, we use a geographically
skewed resources demand generated from one side of the
topology to understand how the spatial and temporal diversity
of traffic affects the choice of finding the data center that can
serve better.

The rest of the paper is organized as follows. The related
work is discussed in Section II. In Section III, we present the
Problem Formulation. In Section IV, we present the simulation
setup and results of our analysis. Finally, in Section V,
we summarize our concluding remarks and discuss potential
future work.

II. RELATED WORK

Several works have previously addressed reducing delay in
the backbone network in a geo-distributed cloud service envi-
ronment [4], [5], [6]. In [4], an algorithm is proposed to reduce
the average delay by assigning the link-distance metric. In [5],
the authors proposed an optimization model by addressing the
trade-off between survivability and latency in geo-distributed
DCs. In [6], an ILP model along with a heuristic is proposed
to minimize the traffic on the backbone network by using the
best migration sequence among intercommunicating (virtual
machines) VMs to schedule the VM migration. Note that our

model of reducing link congestion translates to reducing delay.
Some other approaches tried to reduce the cost of providing

cloud services by utilizing a spatial and temporal variation of
DC maintenance cost and using renewable energy source. In
[7], an optimal resource allocation scheme is presented by
considering the spatial diversity of the DC cost to satisfy user
requirements at a lower cost. A framework is proposed to



balance the load among Geo-distributed DCs for the requests
of web application based on the availability of renewable
energy sources on each site. This would reduce the energy
consumption cost and brown energy usage by utilizing green
energy cfficiently [8]. In [9], an optimization model is pro-
posed to minimize the deployment and operational cost for
green distributed DCs by reducing the power consumption and

server deployment cost.
In [10], a hierarchical approach for workload management

in geo-distributed DCs is propoposed to achieve load balancing
and energy cost reduction by minimizing the amount of state
information exchanged among the DCs. A mixed integer
programming is presented in [11] to provision resources for
virtual network (VN) requests optimally to maximize the total
revenue. In [12], they proposed an optimal route selection
technique in a content delivery network (CDN) that enables
an edge server to operate within a given region of CDN. This
retrieves content from an origin server more effectively by
optimally routing through the CDN’s own nodes to avoid net-
work congestion. In [13], the authors presented a cooperative
mathematical framework on CDN and traffic engineering in
an ISP network to reduce the congestion and delay through

traffic engineering and optimal server selection technique.
However, we consider the problem from a different and

more general point of view where the cloud services are
not only limited to web applications or content distribution,
but each DC can provide the same service seamlessly. We
further consider a two tuple demand of bandwidth and resource
requirements to be served both by the network as well as by the
DCs. Here, we do not consider the intra-DC (east-west/north-
south) traffic, and thus, the detailed internal structure of a DC.

III. PROBLEM FORMULATION

To depict the problem, consider the topologies shown in
Figs. 1 and 2, which depict the Abilene and Agis topologies,
respectively. The PoPs are indicated with black dots and the
DCs are indicated with red dots. In our model, we assume that
ISPs also operate all DCs, and thus, it has full control over both
the network and the data centers. While currently in practice,
many DCs are provided by independent DC providers, and
many large ISPs are starting to have their own DCs so that
they can control customers’ traffic and revenue in their own

network.
In our model, each request consists of 2-tuple (h,r) where

h is the bandwidth demand of a request and r is the resource
demand needed from a DC. Our notion of a request is a
collective request, not an individual user’s request for the
purpose of traffic engineering. Thus, bandwidth demand suits
well for this purpose. Certainly, a DC can serve requests from
multiple PoPs. We assume that there is a given set of paths PZ-‘Z)
from PoP ¢ to DC d. The bandwidth request from one PoP to
one DC can also be split among available paths from that PoP
to that DC in our problem context as discussed later in our
formulation. Therefore, the portion of the bandwidth demand
that needs to be satisfied by an available path, needs to be
satisfied by the capacity of all the links, ¢;,! € L associated
with that path p € Pg) from a PoP to the DC. The resource
request must be satisfied by the capacity of the chosen DC or

DCs given by aq,d € D. Thus, at a particular instant, for a
request ¢ € @; from PoP i € I, the request tuple is further
represented by (h;q, i), Which is to be served by a DC from
the available DCs d € D. Notations used in our model are
summarized in Table I.

A. Constraints

Consider an individual request ¢ from PoP ¢ consisting of
two tuple (h;q,7iq), that is to be satisfied by a data center.
This can be indicated through the binary decision variable wfq
satisfying the following conditions:

dwh =1, qeqiiel (1)
deD
That is, just one wfq will be 1 for every ¢ € Q;,7 € I to
indicate the selected data center d. Next, we need to find a
single path p for this request from PoP 1 to this data center. If
we indicate the path decision variables by vflqp, then selection
of a single path is indicated by the following relation

d d .
ok, =l qeQiicl 2)
;DEPfi7

When a data center is not selected, the corresponding wfq is

zero, and then for these cases, the above constraint is vacuous.
Since at any instant, there are many requests ¢ from a PoP

to a data center, a subset of them will go to a particular DC. In
other words, the requests will be spread out among multiple
data centers. Thus, from a traffic engineering point of view,
we can take an aggregated approach instead of looking at each
request individually. This view allows us to sum up all requests
from a PoP, i.e., quQi hiqg = hi, quQi Tiq = 7i. Secondly,
instead of using binary decision variables for each request,
we can view the traffic distribution as proportional to different
data centers, allowing us to use a real variable to represent the
amount of allocation. Therefore, for the rest of the discussion,
it suffices to use this aggregated view and consider the problem
in terms of a demand request as (h;,r;) from PoP 4, instead
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TABLE I: Notations used in Formulation

Constants:

D = Set of data centers

I = Set of point of presence (PoP)

Q; = Set of requests at PoP ¢

L = Set of links

Pg} = Set of paths from PoP ¢ to datacenter d

M = A large positive number

€ = A very small positive number

hiq = Bandwidth demand generated by request ¢ at PoP 4

riq = Resource demand generated by request g from PoP 4

h; = Bandwidth demand generated from PoP %

r; = Resource demand generated from PoP i

c; = Available capacity on link [

aq = Capacity of data center d

6?}7[ (t) = Link-path indicator: 1 if path p which is set up from PoP ¢
to data center d uses link / in order to satisfy demand of PoP 7 by data
center d, 0 otherwise

a, (4, Y = Weight parameters related to 3 optimization objectives

Variables:

wl.dq = Binary decision variable (0/1) for request g from PoP ¢ to select

data center d
qup = Binary decision variable (0/1) for selecting path p for request
q from PoP i to data center d

yf = Bandwidth allocation for traffic from PoP ¢ to data center d

:c‘iip = Bandwidth allocation in path p, if traffic from PoP 7 to data
center d uses path p

zfl = Bandwidth requirement on link [ for PoP ¢ to be satisfied by data
center d

u = Max. utilization of any link

fzvl‘.il = Binary decision variable to indicate whether link [ is used to
establish path from PoP ¢ to data center d (this parallels zfl)

Qf = Resource allocation for traffic from PoP ¢ to data center d

yf = Binary decision variable to indicate that traffic originated from
PoP ¢ is served by data center d (this parallels yf)
kq = Max. utilization of DC d

of (hq,1iq). With this aggregation, the total amount of the
bandwidth demand originated by the requests from a particular
PoP 7 is the summation of the bandwidth that is to be allocated
from PoP i to all chosen DCs d to satisfy those requests:

ny:hi, iel (3)
deD
The bandwidth that is allocated to a particular path from PoP
1 to DC d is given by using the path flow variables :cfp:

fop:yf, iel,de D 4)

d
pEPip

If any bandwidth is allocated on particular path p to satisfy a
portion of the request of bandwidth demand h; from any PoP
1, then all the links associated with that path have to carry that
portion of demand h;. Therefore, we can determine the {low
on each link [ € L:

> bl =z, leLicldeD (5)
pEPY,
The total amount of bandwidth required from one link [
must not exceed the capacity of that link times the maximum

utilization of any link. This constraint is required to ensure
link level load balancing.

ZZzﬁgclu, lel (6)

i€l deD

Note that the maximum utilization of any link cannot be more
than 1 at any point.
u < 1. @)

Constraints (8) and (9) are used to identify the links that
are used to establish the paths from PoP i to DC d.

2 <Mzl leLjiel,deD (8)

2 >eZd lelLjiel,deD )

Now, the total amount of the resource demand originated by
the requests from the particular PoP ¢ is the summation of the
resources that is allocated to all chosen DCs d to satisfy those

requests:
Z gl=r, diel
deD

(10)

Next, we introduce a binary shadow variable §¢ corresponding
to y¢ to track one-to-one mapping from PoP i to data center
d by using a large positive number M and a small positive
number . Then, we address resource allocation of gf to the
appropriate tuple (¢,d), ensuring this is in accordance with
shadow variable .

yd< My, iel,deD (11)
d ~d .

yi >ey;, 1€l,deD (12)

gt <My, iel,deD (13)
gt>eyd, iel,deD (14)

The resource requirement generated by the requests coming
from all PoPs 7 € I to data center d must not exceed the
available resources of that data center times the maximum
utilization of any DC. This constraint is required to ensure
DC level load balancing.

ng <agkq, deD
el

(15)

Since the maximum utilization of DC d cannot be more than
1, we have
kd S 15

deD (16)

Note that the advantage of parameter k; is that our model is
applicable to the scenario when the maximum DC utilization
for each data center is set to different values than one.

B. Objective Function

We consider three goals: minimize bandwidth cost of rout-
ing, minimize the maximum link utilization, and to load
balance DC resource utilization. Since these goals are of
different types, we take a utility function-based approach by
assigning weights to these three components that form the
objective function. Different weight parameters, o, i, 7, allow
us to understand the influence of each term on the overall
decision. Thus, the objective function can be written as:

minazzzfzﬁ—kuu—i—’kad.

iel deD IeL deD
In summary, the goal of the optimization problem is to
minimize (17) subject to the constraints (3) - (16).

7)



IV. SIMULATION STUDY SETUP AND RESULT ANALYSIS

To conduct our study, we used two topologies, Abilene and
Agis, shown in Fig. 1 and 2, consisting of a set of PoPs and
geo-distributed DCs. The location of these DCs is chosen from
Google’s current DC locations in the US. We set a maximum
number of paths from a PoP to a DC where a bandwidth
demand generated from a PoP can be split among all the
available paths to reach the chosen DC. We consider the
capacity in the directly connected links between a PoP and a
DC to be 1000. For all other links, we consider the capacity as
100. Parameter values used for the topologies are summarized
in Table II.

To solve the optimization model at any instant, we use an
AMPL/CPLEX (v 12.6.0.0) tool environment. For the experi-
ments we conducted, solving the MILP model using CPLEX
took a minimum of 0.05 and 0.66 (scenario-1) seconds to a
maximum of 1.16 and 67.49 seconds (scenario-3) for Abilene
and Agis, respectively, and based on the different conditions
set up at different scenarios and amount of bandwidth demand.
In most cases, the MILP problem was solved optimally. For
the instances when it was not solved optimally, the highest
optimality gap for Abilene was observed to be 0.52%, while

for Agis, the gap was observed to be 3.39%.
Recall that a request is represented by the tuple (h,r). We

varied h and r separately for different scenarios as shown in
Tables III and IV. For simplicity, we consider the capacity of
a data center as a whole that is used to satisfy the resource
requirements (r) generated from the PoPs. We used both
fixed demand (FD) and lognormal distribution (LD) of the
bandwidth requirement generated from PoPs. LD was used
since an earlier study found the distribution of traffic to follow
a lognormal distribution in wide area networks [14]. We kept
the average value of required bandwidth of all PoPs the same
for both FD and LD. The standard deviation for LD was 0.885.
For each case of LD, we used 5 independent runs and report

the results on the average value.
We varied the value of the weight parameters associated

with the individual objectives of the composite objective to
understand how it affects the system to give an indicator
to the cloud service providers about the importance of each
individual objective. We divided our study into two major
parts, which motivated us to divide the scenario table into two
parts (Group-A and B) as well. These studies reflect a number
of systematic changes to understand the impact. In Group-
A, we wanted to see how the average and maximum link
utilization and average number of links used per path change
as we uniformly vary the bandwidth demand (h;), while
keeping the resource demand fixed. In Group-B, we wanted to
study how the geographically skewed resources generated by
the spatial and temporal variation of traffic generation affects
the choice of a DC by using the metrics similar to Group-A.

TABLE II: Topology related parameters

Topology Name Abilene | Agis
Number of PoPs 11 25
Number of Data Centers 3 5
Number of links 17 35
Number of paths from a PoP to a DC 5 10

TABLE III: Scenario Table (Group-A): h varied while r; =
40, ag(Abilene) = 200, aq(Agis) = 500

[ Scenarios | Description [ o | w | ~ ]
Scenario-1 | Using nearest DC 0.33 0.33 0.33
Scenario-2 | Link level load bal- | 0.01 0.98 0.01
ancing

Scenario-3 | Both link and DC | 0.01 | 0.745 | 0.245
level load balancing
(priority given on link
level)

Scenario-4 | Both link and DC | 0.01 | 0.495 | 0.495
level load balancing
with same priority

TABLE IV: Scenario Table (Group-B): geographically skewed
Resources r while h;(Abilene) = 50, h;(Agis) = 25

[ Scenarios | Description [ o | pw | ~ ]
Both link and DC | 0.01 | 0.745 | 0.245
level load balancing
(priority given on link
level)

Both link and DC
level load balancing
with same priority
DC level load balanc-

ing

Scenario-5

Scenario-6 0.01 0.495 | 0.495

Scenario-7 0.01 0.01 0.98

In scenario-1, the value of the weight parameters is the
same for all the individual objectives. However, the maximum
link utilization and maximum DC utilization are always less
than one as usage cannot go beyond the maximum available
capacity. The value of another objective, which is minimizing
the number of links per request, is significantly larger (first
objective in the composite objective). So, multiplying these
objectives with the same weight factors means that choosing
the nearest DC (requires a less number of links in the path
from the request generating PoP to that DC) is almost the
sole priority.

In scenario-2, the weight factor associated with link level
load balancing is very high compared to the other two objec-
tives that indicate that link level load balancing is the main
priority while minimizing the number of links used per request
is also important. As we mentioned earlier, the value of the first
objective is already high, so even though we multiply it with
a small value weight factor, it will still have a strong influence
in the overall decision. We want to ensure that choosing the
nearest DC is always an important factor as the bandwidth
cost and link congestion is affected by this.

In scenario-3, we chose the value of the weight parameters
in such a way that importance can be given to all three
individual objectives. The physical significance of this is that
at first, the request from a PoP will try to be served by the
nearest DC if the links associated with the path are not over
utilized/congested and the request serving DC is not over
utilized as well. Here, we give more importance on link level
load balancing than DC level load balancing. In scenario-4,
we adjusted the value of the weight parameters to give equal
importance on both link and DC level load balancing.

Scenarios 5, 6, and 7 ("Group-B”) are used to analyze how
the choice of request serving DC varies due to geographically



TABLE V: Skewed Resource Requirement from the PoPs
(Used in Scenario-5, 6 and 7)

Abilene Topolog
TL [ T2 | T3 | T4 | T5 | T6 | T7T | T8 | T9 | Ti0 | Til
90 | 80 | 70 | 20 | 80 | 30 [ 30 | 20 | 10 5 5
Agis Topology
T1-5 T6—10 71115 T16—18,20,21 719,2225
100 50 25 20 5

TABLE VI: DC Capacity Used in Scenario 5, 6 and 7

Topology Name ay a2 as aq as
Abilene 200 | 200 | 400 X X
Agis 125 | 250 | 250 | 1000 | 1000

skewed resource requirements with different DC capacities
using parameters, resource, and DC capacity as shown in
Tables IV, V, and VI, respectively. Note that since there are
3 DCs for Abilene, a4 and as are not applicable and marked

with ‘X’ in Table VL
Our motivation for the choice of the values of the parameters

presented in our study was to create different scenarios to
check how different system metrics vary. While we discuss
a number of results using the above parameter values, we
have two main postulates. Postulate-1: we postulate that
when choosing the nearest DC is the prime objective, the
average number of links used per path and the average link
utilization will be less compared to the situation where more
importance is given on load balancing. Postulate-2: In case of
geographically skewed resources in one region of the topology,
the average number of links used per path will continue to
increase if we keep increasing the importance on DC level
load balancing.

A. Group-A: Average and Maximum Link Utilization

We presented a comparison between scenario-1 and 2 in
terms of average and maximum link utilization in Fig. 3 and 4
for Abilene and Agis, respectively. By varying the bandwidth
requirement in an increasing order for FD, we can see that
the avg. link utilization was lower in scenario-1 compared to
scenario-2, while the max. link utilization was higher under a
less overloaded condition. However, as the bandwidth demand
increases, at some point the value of these metrics became the

same for both the scenarios.
The key point to be noted here is that when the bandwidth

demand was high, the links associated with the shortest path
to the nearest DC did not have enough capacity to support the
bandwidth requirement and that is why the requests had to use
an alternate path (not shortest path) to reach the chosen DC
in scenario-1. For LD, the avg. link utilization was always
lower in scenario-1 compared to scenario-2 while the max.
link utilization was always higher. So, postulate-1 holds. For
scenario-3 and 4, we found a very subtle increment compared
to scenario-2 for both metrics, so we did not plot them here.

B. Group-A: Average Number of Links Used per Path

In Fig. 5 and 6, we presented an analysis on how the
average number of links used per path varies for Abilene

Bandwidth Demand Vs Link Utilization

Link Utilization

Tlo 20 30 40 50 60 70 80
Bandwidth Demand

Fig. 3: Link Utilization(Abilene): Scenario-1 vs. Scenario-2

Bandwidth Demand Vs Link Utilization

Link Utilization
g

10 15 20 25 30 35 40
Bandwidth Demand

Fig. 4: Link Utilization(Agis): Scenario-1 vs. Scenario-2

and Agis, respectively. For FD, we can see that in scenario-1
where we focus primarily on using the nearest DC, the average
number of links used per path increased under an overloaded
network condition. Thus, to satisfy the bandwidth demand, it
automatically had to use the alternate path. This indicates that
the requests were served by the shortest path up to a certain
point of bandwidth demand requirement. In scenario-2, when
we primarily focused on link level load balancing, the average
number of links used per path was higher than in scenario-1
as it was using the alternate path to go to the chosen DC.
However, at some point, it merged with scenario-1 (Abilene)
for not having enough capacity in the links associated with

the shortest path, and it had to choose the alternate path.
Now, we can see that more links have been used per path

in scenario-3 compared to 2 and 1, and the highest value
of this metric can be seen in scenario-4. From this, we can
see that when DC level load balancing gets more influence
in the overall decision, the nearest DC is not always chosen.
Therefore, the average number of links used per path increased
due to choosing the far DC to reach that DC from the request
generating PoPs. Similar behavior was found for LD, as the
avg. number of links used per path increased gradually from
scenario-1 to scenario-4 for the same avg. value of bandwidth
requirement. This also indicates that as we increase the weight
on load balancing, the avg. number of links used per path
increases and therefore, the other part of postulate-1 holds.

C. Group-B: Effect of Geographically Skewed Resources

We created this situation by considering a higher amount of
resource requirements (Table V) from the PoPs located near
the west coast and increasing the capacity of the DCs (Table
VI) located near the east coast of Fig 1 and 2. Then, from
scenarios 5 to 7, we continuously increased the value of weight

factors associated with DC level load balancing.
As more influence is given on the DC level load balancing,

more requests from the west coast were satisfied by the DCs



TABLE VII: Analysis of Geographically Skewed Traffic

Abilene Topology (Fig. 1)
Scenarios Avg. Link Util.(UD) | Max. Link Util.(UD) | Avg. # Links Used per Path(UD) | Avg. Link Util.(LD) | Max. Link Util.(LD) | Avg. # Links Used per Path(LD)
Scenario-5 | 33.38 50.25 2.17 35.50 55.98 242
Scenario-6 | 33.43 50.50 2.33 35.58 56.23 2.46
Scenario-7 | 56.62 100.00 2.50 59.21 89.85 2.79
Agis Topology (Fig. 2)
Scenario-5 | 30.76 74.75 2.77 18.42 4221 3.06
Scenario-6 | 34.12 7525 2.89 20.49 49.06 3.32
Scenario-7 | 41.92 100.00 3.52 23.56 89.14 3.67
25 [ Bandnidth Demand v Ave, Link Used Per Path Our study can help the cloud service providers to better serve
Mt their customers based on their requirements.
P : In the future, we plan to extend our model by considering
Baaf Pt throughput, latency, and storage as a demand for specific cloud
2 e : services. We also plan to develop a heuristic so that our scheme
Fanf o et can work more efficiently for larger topologies where we can
. M use our optimization model as the benchmark to study the
E——— T performance of the heuristic.
Bandwidth Demand

Fig. 5: Average Number of Links Used per Path (Abilene)

Demand Vs Avg. Link Used Per Path

Link Used Per Path
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Fig. 6: Average Number of Links Used per Path (Agis)

located near the east coast. We can observe this by looking at
the value of average links used per path from Table VII. The
value of this metric increased with the increment of weight on
DC level load balancing since the more requests will be served
by a far DC, then the more links will be required to establish a
path to that DC. Therefore, our postulate-2 holds. Furthermore,
average and maximum link utilization have also been increased
from scenario-5 to 7 as we continue to decrease the weight on
link level load balancing. Scenario-7 is the extreme case where
most requests are served by the furthest DC, which indicates
that our scheme can balance the load among geo-distributed
DC:s to provide better service to handle geographically skewed
resource requirements from DCs.

V. CONCLUSION AND FUTURE WORK

Providing the optimal connectivity among the PoPs and
DCs while reducing the bandwidth cost, delay and loss is
a challenging research problem. In this paper, we present a
novel MILP formulation that considers all these issues. It has a
composite objective to reduce the bandwidth cost by choosing
the nearest DC if the links associated with the path are not
congested and the DC is not overloaded. We show the efficacy
of our model under both normal and geographically skewed
traffic conditions through some metrics e.g. avg. and max.
link utilization and the avg. number of links used per path.
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