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Abstract—Allocation of resources in data centers (DCs) needs
to be done in a dynamic fashion for cloud enterprise customers
who require virtualized reservation-oriented services on demand.
Due to the spatial diversity of data centers, the cost of using
different DCs also varies. In this paper, we propose an allocation
scheme to balance the load among these DCs with different cost
to minimize the total provisioning cost in a dynamic environment
while ensuring that the service level agreements (SLAs) are
met. Compared to a benchmark scheme (where all requests are
first sent to the cheapest data center), our scheme can decrease
the proportional utilization from 24% (for heavy load) to 30%
(for normal load) and achieve a significant balance in the cost
incurred by individual DCs. Our scheme can also achieve 7.5%
reduction in total provisioning cost under certain service level
agreement (SLA) in exchange of low increment in blocking.
Finally, we tested our heuristic on 5 DCs to show that our
allocation schemes follows the weighted cost proportionally.

Index Terms—Data Center Networks, Resource Optimization
and allocation on-demand, Denial of Service, Load Balancing,
Virtual Network

I. INTRODUCTION

Enterprise customers use cloud data centers (DC) for a
variety of applications. Often, they require virtual network
(VN) services from the DC providers in a reservation-oriented
mode for both network and compute resources. From the
perspective of a DC provider, it wishes to accommodate as
many enterprise customers while meeting the service goals.
Furthermore, the provider with multiple DC locations must
balance between resource utilization and cost, especially given
that the geographically distributed DCs have widely varying
costs, for example, due to electricity pricing. Such price varia-
tions seem to suggest that it is cheaper to allocate customers to
the cheaper DC; on the other hand, this could lead to violation

of service level agreements (SLAS).
Most work related to allocation of requests in intra-DC

networks consider east-west traffic, i.e., the intra-DC traffic
between servers. In our work, we focus instead on enterprise
customers’ requests that result in north-south traffic in DCs
requiring both network bandwidth and server resources, with
multiple DC locations. Even though, due to the advancement
of server virtualization technologies, these days the percentage
of east-west traffic is increasing in intra-DC network compared
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to north-south traffic, still now 20% of the intra-DC traffic
is north-south. Furthermore, this percentage is very high for
university and private enterprise DCs where 40-90% of the
intra-DC traffic is north-south [1]. A recent study by Cisco
showed that more than 90% of traffic in campus network
is north-south traffic [2]. This motivates us to work with
north-south traffic. In particular, we address serving different
enterprise customer groups using VNs in the DC networks
through dynamic traffic engineering by allocating both net-
work bandwidth and processing resources. That is, we consider
the north-south traffic environment where each request consists
of a two-tuple demand: one for DC network bandwidth and the
other for the processing demand at the end hosts. In particular,
we propose an adaptive allocation scheme to balance the
load among multi-location DCs with different costs in a
dynamic demand environment from enterprise customers in
a reservation-oriented mode and measure the performance of
this scheme in terms of overall cost, the cost and utilization
incurred by individual DCs and blocking. A salient feature
of our approach is that we consider the demand request from
enterprise customers to consist of both bandwidth and compute
resources. Furthermore, we also aim to reduce power con-
sumptions. We factor in the cost variation for DCs, assuming
that this cost can vary from one place to another as the cost
of energy and bandwidth has a spatial diversity. Our proposed
scheme strives balance the load among the available DCs while
minimizing the incurred cost due to provisioning the requests.
We model in the potential SLA violation through proportional
DC utilization. That is, if the proportional utilization of a
DC goes beyond a threshold, a penalty cost is incurred. We
compare our scheme to a benchmark scheme that always

prefers the least cost DC.
The rest of the paper is organized as follows. The related

work is discussed in Section II. In Section III, we propose our
adaptive allocation scheme (LBSel). In Section IV, we sum-
marize the simulation setup and parameter details. Results are
discussed in Section V. Finally, in Section VI, we summarize
our concluding remarks and discuss potential future work.

ITI. RELATED WORK
A number of research works has addressed balancing
the load among geographically distributed servers. In these
works, researchers proposed various policies to distribute the
workload among geographically distributed DCs to achieve



different objectives. [3], [4], [5], [6], [7], [8] focused on
minimizing electricity cost.

In [9], [10], the prime objective was to improve energy
efficiency. [11], [12], [13] considered load balancing to max-
imize the usage of renewable energy. Some other research
works aimed to achieve different goals such as minimizing
bandwidth cost [14], reduction of carbon footprint [15], [16],
and achieving cooling efficiency [17]. A scheme is proposed
in [3] to reduce the electricity cost but not consumption by
managing the majority of the requests to be served by the DC
with low electricity price. In [4], a framework is proposed to
minimize the total electricity cost considering price variation
in several electricity markets while ensuring the quality of
service (QoS). In [5], authors proposed a scheme to reduce the
power cost in geo-distributed DCs that is especially effective
for handling delay tolerant workloads. In [6], they proposed a
centralized algorithm to reduce the electricity price by using
energy storage through backup batteries. They utilize the
energy storage idea in a way that charging the batteries at
a low price time and then using the batteries to support
electricity need at the time when the price is high. In [7],
authors proposed an algorithm to minimize the electricity cost
by ensuring QoS for premium customers only and reducing
throughput of ordinary customers in the situation when the
electricity cost exceeds a desired monthly budget.

In [9], authors proposed a solution to reduce the electricity
consumption of operating DCs by utilizing a diversity of
global electricity market and heterogeneity of geo-distributed
DCs. In [12], they proposed a strategy to maximize the
usage of renewable energy and minimize the consumption of
cooling energy by optimally placing the requests among all
available DCs. In [14], they proposed a model to minimize
the bandwidth and energy cost by considering the majority of
requests to be served by low price DCs. However, they did
not simply imply the naive idea of reducing energy cost by
transferring the requests towards low price DC, rather they
considered minimizing bandwidth cost as well. A fuzzy logic-
based controller for cost and energy efficient load balancing
in geo-distributed data centers was proposed in [18]. A dis-
tributed framework for carbon and cost aware geographical
job scheduling in a hybrid DC infrastructure is proposed in
[19]. [20] proposed a load balancing scheme to distribute
the workload in geo-distributed data centers of a cloud while
considering the minimization of service delay.

There are a number of ways our work differs from the
above works. First, we model the DC explicitly by using a
DC topology, which allows us to also generate the actual VN
allocation (with paths) for each customer, along with the hosts
the VN customers are allocated to. Second, in our approach,
the request is made up of two resource tuples, one for the
bandwidth resources and the other for host compute resources.
Third, Our approach reduces the energy cost by minimizing
the energy consumption as well as taking advantage of spatial
diversity of price. In an earlier work, a mixed integer linear
programming formulation was developed [21]. Since this
formulation was not scalable to solve large scale problems,
we developed a heuristic to solve large scale problems in [22].
However, neither of these two works considered proportional

distribution of load among geo-distributed DCs (with DC
network awareness) or diversity of cost of using different
DCs. This led us to develop our proposed LBSel to distribute
the load among geo-distributed DCs proportionally when the
cost of different DCs is different. In another concurrent work
[23], we considered latency as a Quality of Service (QoS)
requirement for VN customers, which is not considered here
since our focus here is on load balancing with network
awareness among available DCs.

ITI. ADAPTIVE ALLOCATION SCHEME (LBSEL)

In this section, we present our proposed adaptive allocation
scheme, LBSel. In this scheme, a DC is selected for satisfying
a request in a way that the scheme can balance the load as
much as possible to reduce the penalty cost due to SLA vio-
lation. Our allocation approach considers new request arrivals
at random from customers, for which the resource allocation
(both network bandwidth and host resources) is done at each
review point ¢ € T', where T is a discrete temporal window
consisting of review points. The duration of a new VN request
that uses the DC is assumed to be random. Note that since the
DC is set up to serve VN customers, at any time instant, there
are existing VN tunnels and host resources allocated for prior
requests. Thus, any (micro-)workload that needs immediate
access to resources, that is, workload that cannot wait until
the next review point, is assumed to be served by existing VN
channels and host resources assigned to the customers that
were set up at earlier review points. Since such immediate
workloads are served through existing resources, they are not
considered in our case. In other words, the scope of our work
is to consider new requests at review points that are major
requests requiring allocation of new bandwidths, VN tunnels

and new resources.
To illustrate our approach, consider the DC topology shown

in Fig. 1, which depicts just one site of the multi-location
DCs. The entry point (EP) in a DC is then the north-end and
the serving host is the south-end of the north-south traffic.
Our approach assumes that there is a central controller that
is responsible to operate the proposed heuristic to set up the
allocations. For instance, this can be accomplished by using a

software-defined network (SDN) based approach.
In our framework, each request consists of a 2-tuple (h, )

where h is the bandwidth demand and r is the processing
resources required from a serving host. Thus, at a particular
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Fig. 1: Data Center Topology [24]



TABLE I: Notations Summary

Constants/Parameters:
D = Set of data centers, N = #(D)
Ja = Set of servers in data center d, H = #(Jg4)
14 = Set of entry points in data center d
V' = Set of virtual networks
K, (t) = Set of requests from virtual network v at review point ¢
F' = Set of frequencies in which a particular server can run
Lg = Set of links in data center d
Pfjkd(t) = Set of paths from entry point % to server j in data center d
for request k from VN v at review point ¢
b4 ir = Power consumption in server j of data center d at frequency f
h“k(t) Bandwidth demand for request k from VN v at ¢

rVk(t) = CPU processing capacity demand for request k from VN v
at review point ¢
a? ¢ = Capacity of server j of data center d at frequency f

;i( ) = Available capacity on link ! of DC d at review point ¢

?(t) = Server in use indicator: 1 if server j of data center d is in use,
0 otherwise
weg = Weighted cost of using data center d
rsq = Request served by data center d in one turn
B%(t)= Normalized cost of data center d at review point t
gq = Proportional utilization of data center d
§ = Threshold of proportional utilization of data center d; a penalty
cost g is be added if the proportional utilization of a data center goes
beyond this point
q = Penalty cost due to SLA violation
a, jt,y: Weight parameters related to 3 individual cost that comprises
total cost
Variables:
u¥kd(t) = Binary decision variable to choose data center d to satisfy
request k from virtual network v at review point ¢
zzjkd(t) = Bandwidth needed on link [ of datacenter d for request k
from VN v at review point ¢
w”’“d( t) = Binary decision variable to choose the optimum frequency
f f]r rom the range of available frequencies of server j of data center d
to meet the required demand of CPU processing capacity for request k&
from VN v at review point ¢

review point ¢, if a VN customer k € K, (t) has a request, the
request tuple is further represented by (hV*(t),r*(t)), which
is to be served by DC d € D. While the bandwidth demand
needs to be satisfied by the capacity of the links within the
DC [ € Ly from the entry point ¢ € I to a server j € Jg, the
processing resources must be satisfied by the servers’ available
resources. We assume that there is a given set of paths P”’“d( )
from entry point ¢ to server j, which could be potentlally
different at each review point ¢.

For energy consumption, we consider that every server can
run at a given set of CPU frequencies f € F. At each
particular frequency, a server works at a particular processing
capacity a?f. A specific amount of power b?f is required to
run the server at that frequency. If we run the server at the
highest frequency, it offers the highest processing capacity, but
consumes the highest amount of power.

We solve the resource allocation problem at each review
point ¢. For this, we use our heuristic which is presented in
Algorithm 1, 2, and 3 in which we attempt to balance the
load among geo-distributed DCs to reduce SLA violation and
accommodate as many requests as possible while minimizing
the resources requirement towards satisfying those requests in
order to reduce the overall cost. Note that Algorithm 1 calls
the procedures described in Algorithm 2 and 3. All notations
used in our heuristic are summarized in Table I. The input and
output of this heuristic are given below:

DC related Input: Number of DCs (N), all paths available
€ PyM i — j, capacity of each link (cf"), capacity of each

server at different frequencies (aj f), wey, TSq.

VN related Input: Resource requirement (r?*) and bandwidth

Algorithm 1 LBSel Heuristic

update a?f,f cF,jedg,de D
update ¢, € Lq,d € D
update wcg, 4, d € D

1.
2.

d=1

K= Zuev #(

K,)

3. while K # 0 && D == 0 do

4
5
6
7.
8
9
1
1

0.
1

count_v =0

Change DC: for all < € 15 do
for all j € NS(i) do
if m§ == 0 then

d
8j

= maz{al;}

for all v € V do

12.

13.

29.
30.

for all k € K, do
if ﬂd == weq && count_v < rsy then

/I CPU Resource Allocation (Algorithm 2)

d vkd

vk _

85, wife,

CRA(’U k,d,r’
use shortest path p €
/I Bandwidth Allocation (Algorllhm 3)

f7
Pv%

”kd JhYF . count_v,uV*, K, m
BA(p,l,c, pek kv, d, z”kd
else
d++
if d = N + 1 then
d=1
end if
go to Change DC
end if
end for
end for
end if
end for
end for
if Y-, mj == H then
D =D\
end if
end while

count_blocking = 0
for all v € V do
for all k € K, do

if 7% == 0 && h** == 0 then

return u**%, w}’jfd, 2Pk
else
count_blocking ++
end if
end for
end for

]f a])
Z-)_]

'ukdj

count_v)

Algorithm 2 LBSel CPU Resource Allocation (CRA)

CRA(v, k,d,r, s, F,a,w, )
/* This procedure allocates CPU resources to satisfy requets
arrived at review point t */
1. if s? > r'* then
d . d
a® f = mmfeFadeTvk {af;}
then
al;

N

if sd > adf
G = 85
'ukd
Wiy = =1
rf =0
end if
end if

return(s, w, 1)

S

if




Algorithm 3 LBSel Bandwidth Allocation (BA)

BA(p,l,c, h,k,v,d, z,u, m, count_v)

/* This procedure allocates link bandwidth to satisfy requets
arrived at review point t */

1. 6= minlep{c?}

2. if h*F < ¢ then

3. for all [ used in p do
4. Zlvkd — Cld _ hvk
5. end for

6. h'" =0

7. count_v + +

8. wtl=1

9. K=K-1
10. m§ =

11. end if

12. return(z, h, count_v, u, K, m)

requirement (hV*) to satisfy the requests at review point ¢.
Output: Near optimal solution to satisfy a request or report
that request as blocked.

Algorithm 1: At first, the heuristic updates the existing
capacity of resources based on the given input discussed above.
To find the best way of allocating resources, the heuristic picks
one DC among all available DCs and continues to use it until
it reaches the max. number of requests it can serve in one turn
based on the weighted cost. Then, the turn to serve the requests
is given to another available DC and the number of requests
served by that DC depends on its weighted cost as well. In
this way, all available DCs get their turn to serve requests
as round robin fashion. Therefore, when all the DCs complete
their turn, the DC used at the first attempt, gets the turn to serve
VN customers back again. This is how the process continues
until all the incoming requests at a particular review point
are served or the resources (servers and link capacity) of all
available DCs are exhausted. If all the requests at a particular
review point cannot be served with existing resources, then
the requests which are not satisfied are reported as blocked
requests. Thus, our heuristic also enables us to compute the
blocking rate under a particular load condition.

When the turn of one of the available DC comes, the
heuristic starts with one entry point (EP) of that DC and
continues to allocate requests through this until either all
neighbor servers (NS) or all required links to establish a path
from that entry point to an NS are occupied. By neighbors, we
mean that two edge switches are considered as the neighbor
edge for each entry point; then, for a particular entry point,
the servers which are connected to this neighbor edge of the
EP are considered as a NS for this entry point. From all the
available neighbor servers, the heuristic picks a server from
a neighbor server rack and continues to use the servers from
that rack until all servers are occupied. When all the servers
from that rack are occupied or do not find enough capacity
for any of the required links to establish a path, the heuristic
starts with another neighbor server rack. This way the heuristic
continues to allocate the available resources to satisfy all the
requests arriving at a review point.

Algorithm 2: In our approach, a server’s goal is to fit as
many requests as it can. To do so, at first, this server starts with
the maximum available capacity and continues to fit requests
until it reaches the limit of its capacity or all the considered

requests are allocated with required compute resources. While
doing so, from all the available capacity of that server, the
heuristic tries to find the minimum capacity using which
resource requirement from one request can be satisfied. After
finding the minimum resource requirement, this quantity is
reduced from the maximum available capacity. Through this,
the heuristic is able to determine the best capacity in which
a server should run. Furthermore, the heuristic gives us the
information that by running the server at this frequency, how
processing capacity that is generated is fractionally allocated

among different requests.
Algorithm 3: After being ensured about the resource ful-

fillment from a server, the heuristic uses the shortest path to
route all the requests that can be satisfied by that server from
the entry point to the targeted server. Now, for all the requests
served by this server, once the shortest path is established,
link capacity is modified by reducing the required link capacity
from the currently available link capacity (from the given input

in the review point) for each link.
We use the following formula to compute the total provi-

sioning cost:
cost = a Z Z Z 2P4(t)

deDveV IEL,

YD IS bt D> weau (1), (1)

deD jeJ veV feF deD veV

From (1), we can see that the total cost consists of three sub
cost where the first cost is for using the amount of bandwidth,
the second cost is due to the energy usage and the third cost
incurs from using that data center which is dependent upon the
cost of bandwidth and energy in the location where the DC is
situated. wcy varies based on the spatial diversity of price of
bandwidth and energy. For simplicity, we consider that wcy
does not vary based on the total amount of bandwidth and
energy usage. It is fixed for a DC in a particular location.
Now, considering SLA violation as explained before, (1) is
extended as follows:

Total_cost = cost + q Z (9a — 0)+, (2)
deD

where z; = max{z,0}.

IV. SIMULATION STUDY SETUP AND PARAMETER VALUES

To conduct our study, we compare our scheme LBSel
with a benchmark scheme LCSel where all the requests are
directed to the cheapest DC if resources are available without
considering load balancing. LCSel also uses a heuristic similar
to LBSel except the concept of weighted distribution. We used
the DC topology shown in Fig. 1. In the first set of extensive
study, we used two DCs (N = 2) to select from; later, we
also used 5 DCs to test whether our allocation scheme is

TABLE II: DC related parameters

Number of links in each DC 56
Capacity of each link 600
Number of nodes in each DC | 820
Number of Entry points 4
Number of Servers 800




TABLE III: CPU Frequencies, Capacities and Power Con-
sumption (watts)

Frequency Option 1 2 3 4 5 6 7 8 9 10
Normalized Capacity | .1 2 3 4 5 .6 v 8 9 10
Power Consumption 10 1 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100

TABLE IV: Number of Requests Served by a Data Center in
One Turn Based on the Weighted Cost

Weighted Cost(wc,) 1 12 | 14 | 16 | 1.8 2

Number of Request Served(rsg) | 20 18 16 14 12 10

proportional to the weighted costs of each DC. Here, two
DCs are heterogeneous in a sense that the usage cost of them
are different means one is cheaper than another. However, the
resources available in each DC are considered to be identical in
this study; each consisted of I; = 4 entry points and J; = 800
servers and all links inside the DC are set with the same
capacity. We set P{;-d(t) = 4 paths from an entry point to a
server among which only one path will be used for a specific
request for the duration of this request. Parameter values used
for the DCs are summarized in Table II.

Here, we vary the wcy for one DC from 1 to 2 in increments
of 0.2 for that DC, where we keep the wcy for other DC
as fixed at 1. wey is the total weighted cost that is incurred
by using DC d. Our assumption of the total cost for getting
service from a DC consists of bandwidth cost and the energy
cost of the server. By using a higher wcy for a DC, we simply
assume that the combination of bandwidth and energy cost
is higher for that DC due to its geo-location as we know
that the bandwidth cost and energy cost have spatial diversity.
The number of requests to be served in one turn by a DC
is determined based on the value of wcy of that DC (see
Section III). However, we must choose this number carefully.
After doing some preliminary simulation, we determined a
suitable value for this number to maximize the utilization of
each DC (load balancing) while keeping the provisioning cost
and blocking within an acceptable limit as well. The number
of requests served in one turn by a DC (based on wcy) used
for this study is shown in Table IV.

We consider V' = 3 VN classes that generate requests.
A request is represented by the tuple (h,r). We vary (h,r)
to create different VN classes. The demand type we use for
these VNs is generated by considering the variation between
different VNs while keeping the request same within each VN,
ie., (b1 1) = (3,0.3), (h?,72) = (6,0.6), (h?,7®) = (9,0.9)
as shown in Table V. We assume that the request arrivals
follow a Poisson process since an earlier study found that the
batch arrivals to DCs follow Poisson process [25]. and the
service duration for the request arrivals is assumed to follow
the negative exponential distribution with an average value of 5
time units measured in terms of the number of discrete review
points.

Note that with an increase in the arrival load, the system
may not have sufficient capacity to accommodate all requests.
Thus, our simulation environment also recorded any requests
that were not satisfied by the system by tracking the blocked
requests to determine the blocking rate. Through our initial

experimentation, we attempted to find the arrival rate for which
the blocking was approximately 1%. We refer to that arrival
rate as a normal loaded network condition, and assigned the
normalized load of 1.0. We then continued to increase the
arrival rate until we found the arrival rate for which the average
blocking was approximately 7% to indicate highly overloaded
condition. Also, through our initial experimentation, we chose
the weight factors for each term in the cost of eqn.(1) and
set them as o = 0.3, = 0.05,y = 8.1 since we found
these values to provide a proper balance among the three cost
components, without any one term being more dominant than

the other two terms.
For simulation, we first determined the warm-up time and

then collected the data for a steady-state region after the
warm-up time. For each arrival rate, we used 10 independent
seeds and reported the results on the average value. We
also computed the confidence interval and found the 90%
confidence interval to be approximately 5% in cost variation
for low arrival rates to 2.5% for high arrival rates. To compute
the power consumption cost which is a part of the total cost,
we use the power consumption and processing capacity of a
particular server that runs at a specific frequency, as shown in
Table III. We consider fractional power consumption for using
a fraction of capacity to satisfy a request from the capacity
in which the server was originally running, since at some
instances, one server can satisfy multiple requests.

V. RESULTS

We divided our analysis into two parts. From subsection
V-A to V-D, we used 2 DCs to show a comparative analysis of
our scheme (LLBSel) and the benchmark scheme (LCSel) based
on how the individual DC cost, individual DC utilization, total
provisioning cost and blocking rate vary with the different
weighted cost under certain network load. Then in subsection
V-E, we used 5 DCs to show that our allocation scheme
follows the weighted cost proportionally.

A. Individual DC Cost

The DC cost is calculated by considering the third part of the
cost (1). Under a normal loaded condition, using our scheme
we can keep the cost of the two DCs almost similar regardless
of increasing the weighted cost. However, as we increase the
load of the system, the cost of the expensive DC starts to
increase with the increment of the weighted cost of that DC.
The reason behind this is that as we increase the load even
though we try to fit more requests to the cheaper DC, the
resources of it become exhausted and the remaining requests
need to use the expensive DC. Therefore, from the point of
view of balancing cost between two DCs, our scheme can
work at its best under normal load condition because of less
requests being directed towards the expensive DC by force.
However, as we can see from Fig. 2a to 2d, our scheme can
achieve a prominent success in keeping a balance between the
cost of two DCs compared to the benchmark scheme.

B. Individual DC Utilization
Recall that, the utilization of a DC is computed based on
the percentage of requests served by that DC. From Fig.



TABLE V: Values associated with the demand type used for this research required by customers from different VN classes.

[ Demand type | Parameters [ Values |
Bandwidth Demand-VN-1 3
. . . . Bandwidth Demand-VN-2 6
Different Bandwidth and CPU Processing Capacity -
. . - Bandwidth Demand-VN-3 9
demand for different VNs while the demand is fixed - -
within each VN CPU Processing Capacity Demand-VN-1 0.3
CPU Processing Capacity Demand-VN-2 0.6
CPU Processing Capacity Demand-VN-3 0.9
Cost Variation Vs DC Cost Cost Variation Vs DC Cost
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Fig. 2: DC Cost: Scheme-1 vs. Scheme-2 under different load condition
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Fig. 3: DC Utilization: Scheme-1 vs. Scheme-2 under different load condition



3a to 3d depicts the comparison between our scheme and
benchmark scheme for balancing DC utilization. From these
figures, it is obvious that our scheme can obtain a better load
balancing from normal loaded condition to very heavily loaded
condition. The gap between the two schemes decreases as the
network load increases which is also due to the forced entry
into the expensive DC as the resources of the cheaper DC gets
occupied.

C. Total Provisioning Cost

The cost is calculated using (2) of Section III. We consider
an SLA which requires that the proportional utilization of a DC
to be within a threshold(§) value. If the proportional utilization
of a DC goes beyond this threshold, an additional penalty
cost is incurred. This penalty cost is incurred as shown in (2).
From Fig. 4a to 4d depicts the variation in total cost under
different load condition. In each sub-figure, we presented the
comparison between our scheme LBSel and the benchmark
scheme LCSel. We varied the value of penalty weight, q.
We tested for three values of §: 0.55, 0.575, and 0.60. For
6 = 0.55, the representative values of ¢; (normalized to per
arrival) that we tested were 0.76, 1.16, 1.52, 1.78 and for
q2, we used 0.32, 0.5, 0.74, 1.16 from normal to heavy loads.
For 6 = 0.575, g1 used were 0.76, 1.16, 1.52, 2.4 and for g,
we used 0.35, 0.59, 0.93, 1.76 from normal to heavy loads.
Finally, for § = 0.6, we used 0.76, 1.16, 1.57, 4.98 for ¢; and
0.42, 0.73, 1.25, 3.64 for g5. Due to the space limitation, we
showed the result for § = 0.575. What this means is that for
normal loads, it is better to have the penalty incurred to be a
low factor for the system to benefit from load balancing. On
the other hand, in overloaded situations, much more traffic is
denied acceptance and the data center loads are also highly
utilized in both data centers so that load balancing does not
result in much improvement in avoiding SLA violations.

D. Blocking

From Fig. 5a to 5d, we can see that the blocking is always
higher in our scheme LBSel than benchmark LCSel scheme.
However, there are two interesting factors to observe: first, the
blocking of our proposed scheme continues to increase as the
weighted cost of expensive DC increases. This is due to the
fact that with the increment of the weighted cost, the number
of requests served by expensive DC in one turn decreases
and more swapping is done between DCs. As a result, such
a situation may arise when the last server used in a turn
may serve fewer requests than its capacity as the turn of
that DC ends. To reduce this, we can increase the number of
requests to be served in one turn, but then we will achieve less
performance in balancing the load between two DCs. Second,
the variation in blocking continues to reduce as the load of the
system increases. This is due to the fact that under heavy load,
blocking due to load is the prominent factor behind the total
system blocking than the blocking incurred due to swapping

between DCs (used in LBSel).
It may be noted that blocking sharply increases at a much

smaller overload for large-scale systems. This behavior is
consistent with a single link loss system model (without
routing and server selection) that can be computed with

TABLE VI: Distribution of Load among 5 Geo-distributed
DCs based on their Weighted Cost

DC# 1 2 3 4 5
weq 1 1 1.2 1.2 1.2
Percentage of | 24.18% 22.9% 18.7% 17.61% | 16.61%
Request Served
wey 1 1 1.6 1.6 1.6
Percentage of | 26.5% 25.4% 17.25% | 16.21% | 14.63%
Request Served
weq 1 1 2 2 2
Percentage of | 30.94% | 28.97% | 13.87% | 13.27% | 12.95%
Request Served

the Erlang-B blocking formula for large offered loads. The
nonlinear concave behavior of Erlang-B blocking is well-
known as the load and capacity increase impacting blocking,
especially when the services have heterogeneous bandwidth
requirements; see [26, Chapter 11] for a discussion.

E. Proportionality of Allocation

Next, we tested on 5 geo-distributed DCs using our heuristic
to see whether our allocation scheme follows the weighted cost
proportionally. We found that our developed heuristic could
balance the load for 5 geo-distributed DCs based on weighted
costs; see Table VI. We understand that a DC provider with
multiple DCs having nearly same amount of weighted cost
should balance the load among available DCs almost equally.
However, if the weighted cost varies by a big margin then,
the DC provider should choose the cheaper DC to serve more
percentage of requests while ensuring that the cheaper DCs are
not over-utilized and the expensive DCs are not underutilized;
this is where our heuristic was able to follow the allocations
to different DCs based on their weights costs.

F. Key observations

Compared to the benchmark scheme, we achieve the fol-
lowing with our proposed LBSel scheme:

« Total provisioning cost reduces up to 7.5%.

o The proportional utilization of the low cost DC can be
reduced up to 30% for normal loads and 24% for heavy
loads.

o The SLA violation and its impact depends on the thresh-
old (J) used and the penalty weighs, factoring in on
normal and heavy loads.

Hence, similar to almost all existing system there is a trade-
off in our scheme too. However, since the blocking increment
is not that significant even in worst case, hence, using our
scheme can help the cloud service providers to achieve a better
load distribution among DCs with different cost factor without
violating SLA in most cases.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel adaptive allocation
scheme (LBSel) that can be operated by an SDN controller
to balance the load among different geo-distributed DCs with
different cost due to spatial diversity. LBSel can achieve
a significant improvement in load distribution to maintain
SLA and keeping a balance between cost of cheaper and
expensive DCs in the cost of a lower increment in blocking.
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Fig. 5: Blocking Rate: Scheme-1 vs. Scheme-2 under different load condition

We compared our scheme to a benchmark scheme (LCSel)
where all the requests were directed towards the cheapest DC
at first (if resources available).

Our approach allows to understand the trade-off study when
the SLA violation as a penalty is taken into consideration.
Furthermore, the penalty incurred is a parameter in the model
that can be adjusted in a sliding scale, as and when needed by

the data center service provider.

In our future work, we plan to study the impact of cost
increment of bandwidth and energy individually. We also plan
to extend our scheme by considering the geographical distance
of available DCs from a VN customer in a time of taking
the decision of forwarding the request of that customer to a
particular DC.
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