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a b s t r a c t 

We consider the problem of allocating data center (DC) resources for cloud enterprise customers who 

require guaranteed services on demand. In particular, a request from an enterprise customer is mapped 

to a virtual network (VN) class that is allocated both bandwidth and compute resources by connecting 

it from an entry point of a data center to one or more hosts while there are multiple geographically 

distributed data centers to choose from. We take a dynamic traffic engineering approach over multiple 

time periods in which an energy-aware resource reservation model is solved at each review point. For 

the energy-aware resource reservation problem, we present a mixed-integer linear programming (MILP) 

formulation (for small-scale problems) and a heuristic approach (for large-scale problems). Our heuris- 

tic is fast for solving large-scale problems where the MILP problem becomes difficult to solve. Through a 

comprehensive set of studies, we found that a VN class with a low resource requirement has a low block- 

ing even in heavy traffic, while the VN class with a high resource requirement faces a high service denial. 

Furthermore, the VN class having randomly distributed resource requirement has a high provisioning cost 

and blocking compared to the VN class having the same resource requirement for each request although 

the average resource requirement is same for both these VN classes. We also observe that our approach 

reduces the maximum energy consumption by about one-sixth at the low arrival rate to by about one- 

third at the highest arrival rate—this also depends on how many different CPU frequency levels a server 

can run at. 

© 2017 Published by Elsevier B.V. 
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1. Introduction 

The increasing growth of cloud based applications such as video

streaming, web search, distributed file systems, scientific compu-

tations, software libraries and document collection made the data

centers (DC) a popular platform in the Internet world. Companies

such as Amazon, Google, Facebook, and Yahoo! routinely employ

data centers for storage, web services and large-scale computations

[1–3] . With the increase in demand, the size and number of DCs

are increasing day by day. Large-scale data centers are set up with

a large number of servers that are interconnected through routers,

switch, and high speed links [4] . Due to the growing usage of data

centers, the expenses of maintenance are also increasing. Power

consumption is a major concern in operating data centers as most
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f the equipment in data centers are temperature sensitive and

ooling through air and water is necessary to keep the temperature

ithin an acceptable limit. Moreover, operating the servers, routers

nd switches also requires a huge amount of power. Data centers

n the USA consumed about 91 billion kilowatt hours annually in

013 and are estimated to consume 140 billion kilowatt-hours of

lectricity annually by 2020 [5] . Hence, reducing the energy con-

umption of data centers has been a challenging research problem.

he ultimate aim behind designing a data center is reducing the

xpenses while gaining the highest efficiency. 

There has been a number of contributions so far to increase the

fficiency of data centers by better utilizing the server resources,

pplying traffic engineering techniques to reduce the bandwidth

nd other operational costs. Some of them [6,7] focus on energy

fficient resource provisioning using dynamic traffic engineering.

owever, to our knowledge, no work has considered how both

ompute resources at the end hosts and network resources inside

he data center are allocated to satisfy the request of virtual net-

ork (VN) customers while minimizing both energy consumption

nd bandwidth cost. Secondly, most work related to traffic engi-
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Fig. 1. Data center topology [8] . 
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eering of intra-DC networks consider east-west traffic, i.e., the in-

ra data center traffic between hosts. In our work, we focus instead

n enterprise customers’ requests that result in north-south traffic

n data centers requiring both network bandwidth and server re-

ources. In particular, we address serving different enterprise cus-

omer groups using VNs at data centers through dynamic traffic

ngineering by allocating both network bandwidth and processing

esources efficiently, while factoring in energy consumption. That

s, we consider the north-south traffic environment where each re-

uest consists of a two-tuple demand: one for data center network

andwidth and the other for the processing demand at the end

osts. 

Our work has three notable contributions beyond the existing

ork. 

• For the dynamic traffic engineering problem, we present a

novel mixed-integer linear programming (MILP) formulation

that is solved at each review point to minimize a composite

objective that consists of bandwidth cost, energy consumption

cost and DC-VN mapping cost from a traffic engineering point

of view while satisfying the virtual network customers by us-

ing the minimum amount of resources from data centers. The

MILP formulation allows the flexibility that requests arriving at

a particular review point may be allocated to any of the avail-

able data centers; for the selected data center, it may use any

of the entry points for the north-south traffic at the north end,

and any of the hosts available at the south-end. Our formula-

tion also considers a penalty cost for a blocked request due to

the potential loss of revenue. 

• We present a heuristic as an alternative to solving the MILP for-

mulation to test the performance of our framework for more

realistic large scale data center networks. Our heuristic com-

pares favorably with the solutions obtained for the MILP formu-

lation for small-scale problems, and is fast to solve large-scale

problems. 

• We present an insight on how different classes of VN customers

are affected in terms of resource allocations with north-south

traffic in data centers. For instance, we address the following

questions: How does each VN class perform? Is there any dif-

ference in the level of satisfaction among different VN classes in

terms of cost and blocking, if so then by how much? By what

percentage can we reduce energy consumption? How does the

performance vary for different VN classes in a comparatively

large data center? 

The rest of the paper is organized as follows. In Section 2 ,

e present the optimization formulation of the traffic engineer-

ng problem to be solved at each review point. In Section 3 , we

ropose our heuristic. In Section 4 , we summarize the simulation

etup and parameter details. Results are discussed in Section 5 .

he related work is discussed in Section 6 . Finally, in Section 7 ,

e summarize our concluding remarks and discuss potential fu-

ure work. 

. Model formulation 

Our dynamic traffic engineering approach considers new re-

uest arrivals at random from customers, for which the resource

llocation (both data center network bandwidth and host re-

ources) is done at review point t ∈ T , where T is a discrete tem-

oral window for dynamic traffic engineering consisting of review

oints. The duration of a new VN request that uses the data cen-

er is assumed to be random. Note that since the data center is set

p to serve VN customers, at any time instant, there are existing

N tunnels and host resources allocated for prior requests. Thus,

ny (micro-)workload that needs immediate access to resources,

hat is, workload that cannot wait until the next review point, is
ssumed to be served by existing VN channels and host resources

ssigned to the customers that were set up at earlier review points.

ince such immediate workloads are served through existing re-

ources, they are not modeled in our work. In other words, the

cope of our work is to consider new requests at review points that

re major requests requiring allocation of new bandwidths, vir-

ual network tunnels and new resources. For this, we first present

 mixed-integer linear programming (MILP) formulation in which

e attempt to accommodate as many requests as possible while

inimizing the resources requirement towards satisfying those re-

uests in order to reduce the overall cost. To illustrate our ap-

roach, consider the single data center network topology shown in

ig. 1 , which depicts just one site of the multi-location data cen-

er that our model considers. The entry point in a data center is

hen the north-end and the serving host is the south-end of the

orth-south traffic. Our approach assumes that there is a central

ontroller that is responsible for solving the proposed optimiza-

ion model and setting up the allocations. For instance, this can

e accomplished by using a software-defined network (SDN) based

pproach. 

In our model, each request consists of 2-tuple 〈 h, r 〉 where h is

he bandwidth demand of the request and r is the processing re-

ources required from a serving host. Thus, at a particular review

oint t , if a VN customer v ∈ V has a request, the request tuple

s further represented by 〈 h vk ( t ), r vk ( t ) 〉 , which is to be served by

ata center d ∈ D . While the bandwidth demand needs to be satis-

ed by the capacity of the links within the data center l ∈ L d from

he entry point i ∈ I d to a server j ∈ J d , the processing resources

ust be satisfied by the servers’ available resources. We assume

hat there is a given set of paths P v d 
i j 

(t) from the entry point i to

erver j , which could be potentially different at each review point t .

For energy consumption, we consider that every server can run

t a given set of CPU frequencies f ∈ F . At each particular frequency,

 server works at a particular processing capacity a d 
j f 

. A specific

mount of power b d 
j f 

is required to run the server at that fre-

uency. If we run the server at the highest frequency, it offers the

ighest processing capacity, but consumes the highest amount of

ower. All notations used in our model are summarized in Tables 1

nd 2 . 

We now present the constraints in our formulation. First, one

C out of the N DCs ( D = { DC 1 , . . . , DC N } ) is at the most selected to

eet request k from VN v at review point t : 

 

d∈ D 
u 

v kd (t) ≤ 1 , k ∈ K v (t) , v ∈ V (1)

nce a datacenter is responsible to fulfill the link bandwidth de-

and request k from VN v , then this data center must be the one

rom which the capacity is allocated for the bandwidth demand: 

 

v kd (t) = h 

v k (t ) u 

v kd (t ) , k ∈ K v (t) , v ∈ V, d ∈ D (2) 

ext, either the total link bandwidth demand must then be served

y the chosen data centers or if there is not enough bandwidth

o serve a request from a particular VN, then this request will be
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Table 1 

Constants used in formulation. 

Constants/Parameters: 

D = Set of data centers, N = #(D ) 

J d = Set of servers in one data center 

I d = Set of entry points in one data center 

V = Set of virtual networks 

K v ( t ) = Set of requests from virtual network v at review point t 

F = Set of frequencies in which server j can run 

L d = Set of links in one data ceneter 

P v kd 
i j 

(t) = Set of paths from entry point i to server j in datacenter d for 

request k of VN v at review point t 

M = A large positive number 

ε = A very small positive number 

b d 
j f 

= Power consumption in server j of data center d at frequency f 

h vk ( t ) = Bandwidth demand for request k of VN v at review point t 

r vk ( t ) = CPU processing capacity demand for request k of VN v at review 

point t 

a d 
j f 

= Capacity of server j of data center d at frequency f 

c d 
l 
(t) = Available capacity on link l of data center d at review point t 

δv kd 
i jpl 

(t) = Link-path indicator: 1 if path p which is set up from entry point 

i to server j uses link l of data center d in order to satisfy request k 

generated by VN v that comes to that entry point i of that data center d 

at review point t to be served, 0 otherwise 

βd (t) = Normalized cost of data center d at review point t 

α, μ, γ are weight parameters related to 3 optimization objectives 

Table 2 

Variables used in formulation. 

Variables 

u v kd (t) = Binary decision variable to choose data center d to satisfy request 

k from virtual network v at review point t 

s v kd (t) = Bandwidth allocation going to data center d for request k of 

virtual network v at review point t 
˜ s v k (t) = Artificial bandwidth allocation for request k of virtual network v at 

review point t 

q v k (t) = Binary decision variable to choose real allocation for request k of 

virtual network v at review point t ˜ f v k (t) = Binary decision variable to choose artificial allocation assuming a 

very high penalty cost for request k of virtual network v at review point 

t 

y v kd 
i j 

(t) = Bandwidth allocation for request k of VN v from entry point i to 

server j of data center d at review point t 
˜ y v kd 

i j 
(t) = Binary decision variable to select request k of VN v to be 

satisfied which comes to entry point i and served by server j of data 

center d at review point t (this parallels y v kd 
i j 

(t) ) 

x v kd 
i jp 

(t) = Bandwidth allocation in path p , if request k comes to entry point 

i of data center d is transferred to server j uses path p at review point t 

z v kd 
l 

(t) = Bandwidth needed on link l of datacenter d for request k of VN v 

at review point t 

e v kd 
j 

(t) = The requirement of CPU processing capacity from server j of 

dataceneter d to satisfy the request k coming from VN v at review point 

t 

g v kd 
i j 

(t) = Server resource (CPU processing capacity) allocation for request k 

of VN v through entry point i to server j of data center d at review 

point t 
˜ g v k (t) = Artificial server resource (CPU processing capacity) allocation for 

request k of VN v at review point t 

w 

v kd 
j f 

(t) = Binary decision variable to choose the optimum frequency f from 

the range of available frequencies of server j of data center d to meet 

the required demand of CPU processing capacity for request k of VN v 

at review point t 
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labeled as an artificial allocation, ˜ s v k (t) , that allows us to keep a

count on also blocked requests: ∑ 

d∈ D 
s v kd (t) + ̃

 s v k (t) = h 

v k (t) , k ∈ K v (t) , v ∈ V (3)

We force the decision of choosing the binary variable of artificial

allocation if a request cannot be served by limited resources: 

 s v k (t) ≤ M ̃

 f v k (t) , k ∈ K v (t) , v ∈ V (4)

A request from a VN can only be considered for either a real allo-

cation or an artificial allocation but not for both at review point t:
˜ f v k (t) + q v k (t) = 1 , k ∈ K v (t) , v ∈ V (5)

f a request is considered for real allocation, the total link band-

idth demand then must be served by the chosen real data cen-

ers: 
 

d∈ D 
s v kd (t) = h 

v k (t) q v k (t) , k ∈ K v (t) , v ∈ V (6)

he total amount of the link bandwidth demand from particular

N v that will be served by data center d is the summation of the

andwidth that is allocated from all chosen entry points i to all

hosen servers j of data center d at review point t : 
 

i ∈ I d 

∑ 

j∈ J 
y v kd 

i j (t) = s v kd (t) , k ∈ K v (t) , v ∈ V, d ∈ D (7)

ext, we introduce a binary shadow variable ̃  y v kd 
i j 

(t) corresponding

o y v kd 
i j 

(t) to track one-to-one mapping from entry point i to server

 at review point t by using a large positive number M and a small

ositive number ε: 

 

v kd 
i j (t) ≤ M ̃

 y v kd 
i j (t) , j ∈ J d , i ∈ I d , k ∈ K v (t) , v ∈ V, d ∈ D (8)

 

v kd 
i j (t) ≥ ε ̃  y v kd 

i j (t) , j ∈ J d , i ∈ I d , k ∈ K v (t) , v ∈ V, d ∈ D (9)

ere, (8) and (9) together addresses the requirement that ˜ y is 1

hen the corresponding variable y has a positive flow; otherwise,
 

 as 0 when y is 0. 

The bandwidth that is allocated to a particular path from entry

oint i to server j of data center d is given by using the path flow

ariables x v kd 
i jp 

: 

∑ 

p∈ P v kd 
i j 

(t) 

x v kd 
i jp (t) = y v kd 

i j (t) , j ∈ J d , i ∈ I d , k ∈ K v (t) , v ∈ V, d ∈ D 

(10)

f any bandwidth is allocated on particular path p to satisfy a por-

ion of the request k of bandwidth demand h vk from any VN v , then

ll the links associated with that path has to carry that portion of

emand h vk . 

Therefore, we can determine the link flow on l for tuple 〈 v,

 〉 : 
 

i ∈ I d 

∑ 

j∈ J d 

∑ 

p∈ P v kd 
i j 

(t) 

δv kd 
i jpl (t) x v kd 

i jp (t) = z v kd 
l (t) 

l ∈ L d , k ∈ K v (t) , v ∈ V, d ∈ D (11)

hile the total amount of bandwidth required in one link l of data

enter d to satisfy the requests of all VNs must not exceed the ca-

acity of that link of this data center: 
 

v ∈ V 

∑ 

k ∈ K v (t) 

z v kd 
l (t) ≤ c d l (t) , l ∈ L d , d ∈ D (12)

urthermore, we must determine whether a request can be served

ith limited server resources or not. If there is a resource limita-

ion to serve a particular request from a VN at review point t , then

he binary variable to choose an artificial allocation for that request

ill be 1. This condition is satisfied by the following constraints: 
 

d∈ D 

∑ 

i ∈ I d 

∑ 

j∈ J d 
g v kd 

i j (t) + ̃

 g v k (t) = r v k (t) , k ∈ K v (t) , v ∈ V (13)

 

 

v k (t) ≤ M ̃

 f v k (t) , k ∈ K v (t) , v ∈ V (14)

 

d∈ D 

∑ 

i ∈ I d 

∑ 

j∈ J d 
g v kd 

i j (t) = r v k (t ) q v k (t ) , k ∈ K v (t) , v ∈ V (15)
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Algorithm 1 Cost effective heuristic. 

for all d ∈ D do 

update a d 
j f 

, f ∈ F , j ∈ J d , d ∈ D 

update c d 
l 
, l ∈ L d , d ∈ D 

end for 

while V � = ∅ && D � = ∅ do 

for all d ∈ D do 

for all i ∈ I d do 

for all NS(j) ∈ EP(i) do 

c d 
j 

= max (a d 
j f 

) 

for all v ∈ V do 

for all k ∈ K v do 

if c d 
j 

≥ r v k then 

for all f ∈ F do 

a d 
j f 

= min (a d 
j f 

) ≥ r v k 

end for 

if c d 
j 

≥ a d 
j f 

then 

c d 
j 

= c d 
j 
− a d 

j f 

w 

v kd 
j f 

= 1 

r v k = 0 

end if 

end if 

end for 

end for 

for all v ∈ V served by NS do 

use leftmost shortest path p ∈ P v kd 
i j 

, i → j 

for all l used in p do 

if c d 
l 

≥ h v k then 

z v kd 
l 

= c d 
l 

− h v k 

h v k = 0 

map → u v kd 

V = V \ k 
end if 

end for 

end for 

end for 

end for 

D = D \ d 
end for 

end while 

count_blocking = 0 

for all v ∈ V do 

for all k ∈ K v do 

if r v k == 0 && h v k == 0 then 

return u v kd , w 

v kd 
j f 

, z v kd 
l 

else 

count_blocking ++ 

end if 

end for 

end for 

 

P  

f

 

r

 

r

 

t  

i  
ext we address resource allocation of r vk ( t ) to the appropriate tu-

le 〈 d, i, j 〉 , ensuring this in accordance with shadow variable ̃  y . 

 

v kd 
i j (t) ≤ M ̃

 y v kd 
i j (t) , j ∈ J d , i ∈ I d , k ∈ K v (t) , v ∈ V, d ∈ D (16) 

 

v kd 
i j (t) ≥ ε ̃  y v kd 

i j (t) , j ∈ J d , i ∈ I d , k ∈ K v (t) , v ∈ V, d ∈ D (17) 

 

i ∈ I d 
g v kd 

i j (t) = e v kd 
j (t) , j ∈ J d , k ∈ K v (t) , v ∈ V, d ∈ D (18) 

n (18) , e v kd 
j 

(t) represents the total amount of resources required

rom server j to satisfy a request from VN v at time t that uses the

erver coming through all entry points of a particular data cen-

er. The total resources allocated to each request from a particular

erver must be less than or equal to the available resources of that

erver of a data center: 

 

v kd 
j (t) ≤

∑ 

f∈ F 
a d j f w 

v kd 
j f (t) , j ∈ J d , k ∈ K v (t) , v ∈ V, d ∈ D (19) 

inally, a particular server j running at a particular frequency f can

roduce a particular capacity a d 
j f 

. However, a server cannot run at

ore than one frequency at a time: 
 

f∈ F 
w 

v kd 
j f (t) ≤ 1 , j ∈ J d , d ∈ D, k ∈ K v (t) , v ∈ V (20)

To achieve the goal of the optimization problem, we consider

our cost components in the objective function: the network band-

idth cost, the server resource cost, the data center location cost

nd the penalty cost for those requests which are not satisfied

y the limited resources identified through the artificial allocation.

urthermore, since resources are of different types, we take a util-

ty function-based approach by assigning weights to different com-

onents that form the objective function. The first three sources

f costs are assigned different weight parameters, α, μ, γ , to un-

erstand the influence of each term on the overall decision, while

he penalty term is assigned a high penalty through parameter M .

hus, our goal is to accommodate as many requests as possible and

his can be accomplished by minimizing the amount of resources

sed. That is, the objective function can be written as: 

min α
∑ 

d∈ D 

∑ 

v ∈ V 

∑ 

k ∈ K v (t) 

∑ 

l∈ L d 
z v kd 

l (t) 

+ μ
∑ 

d∈ D 

∑ 

j∈ J 

∑ 

v ∈ V 

∑ 

k ∈ K v (t) 

∑ 

f∈ F 
b d j f w 

v kd 
j f (t) 

 γ
∑ 

d∈ D 

∑ 

v ∈ V 

∑ 

k ∈ K v (t) 

βd (t) u 

v kd (t) + M 

∑ 

v ∈ V 

∑ 

k ∈ K v (t) 

˜ f v k (t) (21) 

o summarize, our unified formulation addresses decision choices

t three different levels: data center, entry point, and then the des-

ination server. Secondly, we take power consumption into account

n determining the right frequency for operating a server. Finally,

e consider four cost components in the composite objectives. 

. Cost effective heuristic 

The MILP problem is an NP-hard problem. Thus, due to the lim-

tation of the optimization model to generate optimal solutions

uickly for large scale problems in a dynamic traffic engineering

ramework, we have developed a heuristic shown in Algorithm 1 .

or the heuristic, we use the notations from Tables 1 and 2 . 

At a particular review point t , for all incoming requests with

andwidth and resource requirements, this heuristic attempts to

btain the best possible solution at this review point. The input for

his heuristic and the output returned by this heuristic are given

elow: 
DC related Input: Number of DCs (N), all paths available p ∈
 

v kd 
i j 

i → j, capacity of each link ( c d 
l 

), capacity of each server at dif-

erent frequencies ( a d 
j f 

). 

VN related Input: Resource requirement ( r vk ) and bandwidth

equirement ( h vk ) to satisfy the requests at review point t . 

Output: Near optimal solution to satisfy a request or report that

equest as blocked. 

The heuristic works on the first fit principle. At first, the heuris-

ic updates the existing capacity of resources based on the given

nput discussed above. To find the best way of allocating resources,
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Fig. 2. Data center topology [8] . 
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the heuristic picks one data center among all available data cen-

ters and continues to use it until either all servers or required

links to establish a path from an entry point to a server are ex-

hausted. Among all available entry points in that DC, the heuristic

starts with one entry point (EP) and continues to allocate requests

through this point until either all neighbor servers (NS) or all re-

quired links to establish a path from that entry point to an NS are

occupied. By neighbors, we mean that two edge switches are con-

sidered as the neighbor edge for each entry point; then, for a par-

ticular entry point, the servers which are connected to this neigh-

bor edge of the entry point are considered as a neighbor server

(NS) for this entry point. From all the available neighbor servers,

the heuristic picks a server from a neighbor server rack and con-

tinue to use the servers from that rack until all servers are occu-

pied. When all the servers from that rack are occupied or do not

find not enough capacity for any of the required links to establish

a path, the heuristic starts with another neighbor server rack. This

way the heuristic continues to allocate from the available resources

to satisfy all the requests arriving at a review point. 

In our approach, a server’s goal is to fill as many requests as it

can. To do so, at first, this server starts with the maximum avail-

able capacity and continue to fit requests until it reaches the limit

of its capacity or all the requests are allocated with required com-

pute resources. While doing so, from all the available capacity of

that server, the heuristic tries to find the minimum capacity us-

ing which resource requirement from one request can be satisfied.

After finding the minimum resource requirement, this quantity is

reduced from the maximum available capacity. Through this, the

heuristic is able to determine the best capacity in which a server

should run. Furthermore, the heuristic gives us the information

that by running the server at this frequency, how processing ca-

pacity that is generated is fractionally allocated among different

requests. After being ensured about the resource fulfillment from

a server, the heuristic uses the leftmost shortest path to route all

the requests that can be satisfied by that server from the entry

point to the targeted server. Now, for all the requests served by

this server, once the shortest path is established, link capacity is

modified by reducing the required link capacity from the currently

available link capacity (from the given input in the review point)

for each link. 

We illustrate the heuristic using Fig. 2 . When a number of re-

quests arrives at a review point, each request is attempted in a

sequential order. The first request picks the leftmost data center

(where data centers are numbered left to right) and enters through

EP1 (if available). Then, it tries the leftmost shortest path, 1-5-13,

to reach server 1. if server 1 is not available, it tries server 2. In

the case of resources not available either at server 1 or 2, the re-

quest tries the path 1-6-14 to reach server 3 or server 4. In case

none of the paths or servers are accessible from EP1 to satisfy the

request, then an entry through EP2 is initiated to reach server 5,

6, 7, or 8. Thus, the attempts are made in the following order: 1-

5-13-s1, 1-5-13-s2, 1-6-14-s3, 1-6-14-s4, 2-7-15-s5, 2-7-15-s6, 2-8-

16-s7, 2-8-16-s8, and so on. This hunting process is continued un-

til the request is fulfilled by a data center, a server with a path
ith the required bandwidth; consequently, the available band-

idth and server resources are updated on the path and the server.

f after trying all data centers and paths and servers, the request

annot not be satisfied, it is deemed blocked. It may be noted that

t any review point, a request may not be satisfied, but one next

n its sequence may be satisfied. This is because the next request

ay have less bandwidth and/or resource requirements than the

revious one since we assume that arriving requests are heteroge-

eous. 

. Simulation study setup and parameter values 

To conduct our study, we use the data center topology shown in

ig. 1 . We set a maximum of two data centers ( N = 2 ) in our study.

ach data center is considered to be identical in this study; the

umber of servers in each data center are the same and all links

nside the data center are set with the same capacity. For the MILP

odel, we set P v d 
i j 

(t) = 4 paths from an entry point to a server in

hich the bandwidth will be allocated to satisfy a specific request

or the duration of this request. 

We divided our studies into eight cases that are clustered into

hree groups as listed in Table 3 (H, VH a , VH b , and VR in this

able are described later in this section). The first group, Group-

, consist s of Case-1, Case-2, and Case-3, where the number of

ervers in each data center is set to 16 and the capacity on each

ink is set to 12, to reflect small-scale DCs. Comparing the re-

ults of the heuristic against the MILP formulation in a dynamic

raffic engineering environment was done for Case-1 and Case-

. The MILP formulation used at each review point of the dy-

amic traffic engineering problem was solved using AMPL/CPLEX

v 12.6.0.0). Beyond this size, CPLEX was found to be highly time

onsuming to obtain even a near optimal solution by setting

 CPLEX option of node limits to 10 0 0 for the branch-and-cut

ethod. In Case-3, we used the heuristic to compare two types of

emands. 

The second group, Group-B, in Table 3 consists of Case-4, Case-

, and Case-6 for large-scale DCs. In this group, we varied the

umber of servers from 800 to 1,600, and capacity of each link be-

ween 500 and 1000 to understand a number of situations, which

ere solved using the heuristic. Case-4 is to consider the situation

here the processing capacity is the bottleneck. Case-5 considers

he scenario when the link capacity is the bottleneck, while Case-6

s also is a case with capacity bottleneck while with a larger num-

er of servers and entry points. 

The third group, Group-C, in Table 3 consists of Case-7 and

ase-8 is to exclusively understand energy consumption. For this

tudy, it suffices to use a small-scale DC, but we change the fre-

uency options to understand the gain in energy consumption. 

We considered V = 3 classes of virtual networks to represent

hree different groups of enterprise customers that generate re-

uests. Recall that a request is represented by the tuple 〈 h, r 〉 .
e varied 〈 h, r 〉 to create different types of demands to run

he simulation for different cases as shown in Table 3 ; these are

ummarized in Table 4 . Type-H in Table 4 assumes that all VN

lasses are homogeneous in terms of 〈 h, r 〉 ; this type was used in

ase-1. Type-VH a reflects heterogeneous VN classes different band-

idth and processing demands, using 〈 h 1 , r 1 〉 = 〈 3 , 0 . 3 〉 , 〈 h 2 , r 2 〉 =
 6 , 0 . 6 〉 , 〈 h 3 , r 3 〉 = 〈 9 , 0 . 9 〉 . VN-2 here requires twice as much re-

ources as VN-1 while VN-3 requires three times as much re-

ources as VN-1. This allows us to see how each VN class is treated

y the DC due to heterogeneity. 

Type-VR is similar to VH a except that we allow variation of the

emand to be uniformly chosen at random within each VN from

 range, i.e., 〈 h 1 , r 1 〉 = 〈 uni f { 2 , 3 , 4 } , uni f { 0 . 2 , 0 . 3 , 0 . 4 }〉 , 〈 h 2 , r 2 〉 =
 uni f { 5 , 6 , 7 } , uni f { 0 . 5 , 0 . 6 , 0 . 7 }〉 , 〈 h 3 , r 3 〉 = 〈 uni f { 8 , 9 , 10 } , uni f

 0 . 8 , 0 . 9 , 1 . 0 }〉 . The three types, type-H, type-VH a , and type-VR,
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Table 3 

Summary of cases (Group-A: Case-1, Case-2, Case-3; Group-B: Case-4, Case-5, Case-6; Group-C: Case-7, Case-8). 

Case Description # of servers Link eapacity 

in each data center of each link 

Group-A 

Case-1 CPLEX and heuristic for demand type H: small-scale (Frequency-SetA) 16 12 

Case-2 CPLEX and heuristic for demand type VH a : small-scale (Frequency-SetA) 16 12 

Case-3 Heuristic for demand type VH a and VR: small-scale (Frequency-SetA) 16 12 

Group-B 

Case-4 Heuristic for demand type VH b with Processing Capacity as Bottleneck: large-scale, 4 entry points (Frequency-SetB) 800 10 0 0 

Case-5 Heuristic for demand type VH b with Link Capacity as Bottleneck: large-scale, 4 entry points (Frequency-SetB) 800 500 

Case-6 Heuristic for demand type VH b : large-scale, 8 entry points (Frequency-SetB) 1600 600 

Group-C 

Case-7 High Frequency Options: HFO (using demand type VH b and Frequency-SetB) 16 12 

Case-8 Low Frequency Options: LFO (using demand type VH b and Frequency-SetC) 16 12 

Table 4 

Values of the general parameters used for this research for VN customers with different demand types. 

Demand types Parameters Values 

Type-H: Homogenous Bandwidth and CPU Processing Capacity Bandwidth Demand from VN-1, VN-2 and VN-3 6 

for each request from all 3 VNs CPU Processing Capacity Demand from VN-1, VN-2 and VN-3 0.6 

Type-VH a : Different Bandwidth and CPU Processing Capacity Bandwidth Demand-VN-1 3 

demand for different VNs while the demand is fixed within Bandwidth Demand-VN-2 6 

each VN Bandwidth Demand-VN-3 9 

CPU Processing Capacity Demand-VN-1 0.3 

CPU Processing Capacity Demand-VN-2 0.6 

CPU Processing Capacity Demand-VN-3 0.9 

Type-VR: Different Bandwidth and CPU Processing Capacity Bandwidth Demand-VN-1 unif {2, 3, 4} 

demand for different VNs while with random within a fixed Bandwidth Demand-VN-2 unif {5, 6, 7} 

range for each request from a particular VN Bandwidth Demand-VN-3 unif {8, 9, 10} 

CPU Processing Capacity Demand-VN-1 unif {0.2, 0.3, 0.4} 

CPU Processing Capacity Demand-VN-2 unif {0.5, 0.6, 0.7} 

CPU Processing Capacity Demand-VN-3 unif {0.8, 0.9, 1} 

Type-VH b : Similar to Type-VH a except of having different Bandwidth Demand-VN-1 3 

values for CPU Processing Capacity demand Bandwidth Demand-VN-2 6 

Bandwidth Demand-VN-3 9 

CPU Processing Capacity Demand-VN-1 0.1 

CPU Processing Capacity Demand-VN-2 0.5 

CPU Processing Capacity Demand-VN-3 1 

Table 5 

Frequency-SetA: CPU frequencies, capacities and operational cost [9] . 

Frequency option 1 2 3 4 5 6 7 8 

Normalized capacity 0.5385 0.6038 0.6692 0.7346 0.8 0.8645 0.9308 1 

Power consumption (watts) 60 63 66.8 71.3 76.8 83.2 90.7 100 

Table 6 

Frequency-SetB: CPU frequency options, capacities and operational cost. 

Frequency option 1 2 3 4 5 6 7 8 9 10 

Normalized capacity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Power consumption (watts) 10 20 30 40 50 60 70 80 90 100 

a  

l

 

w  

V  

C

 

b  

i  

t  

F  

Table 7 

Frequency-SetC: CPU frequency options, capacities and operational 

cost. 

Frequency option 1 2 3 

Normalized capacity 0.3 0.6 1 

Power consumption (watts) 30 60 100 

q  

t  
re used in the first group of studies (Case-1, Case-2, and Case-3)

isted in Table 3 . 

Type-VH b listed in Table 4 are also heterogeneous demand but

ith an wider gap for processing requirements between the three

N classes. This type was used in the rest of studies (Cases-4 to

ase-8). 

For server frequencies, we used three sets of frequencies, la-

eled Frequency-SetA, Frequency-SetB, and Frequency-SetC shown

n Tables 5 , 6 , and 7 , respectively. Frequency-SetA was used in

he small-scale DC study, Group-A (Case-1, Case-2, and Case-3).

requency-SetB was created for two purposes: to allow more fre-

4  
uency options and to uniformly spread out normalized capacity;

his set was used for in the large-scale DC study, Group-B (Case-

, Case-5, and Case-6). Finally, Frequency-SetC with less frequency
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option was created to understand the energy consumption gain

with larger number of frequency options compared lesser number

of frequency options; this is used in Group-C (Case-7 and Case-8)

for the energy consumption study. 

All arrivals for the dynamic traffic engineering simulation were

generated randomly. Specifically, we assumed that the request ar-

rivals was a Poisson process and the service duration for the re-

quest arrivals was assumed to follow the negative exponential dis-

tribution with an average value of 5 time units measured in terms

of the number of discrete review points. Note that with an increase

in the arrival load, the system may not have sufficient capacity

to accommodate all requests. Thus, our simulation environment

also recorded any requests that were not satisfied by the system

by tracking the blocked requests to determine the blocking rate.

Through our initial experimentation, we attempted to find the ar-

rival rate for which the blocking was approximately 1%. We refer

to that arrival rate as a normal loaded network condition, and as-

signed the normalized load of 1.0. We then continued to increase

the arrival rate until we found the arrival rate for which the aver-

age blocking was approximately 10% to indicate highly overloaded

condition. Also, through our initial experimentation, we chose the

weight factors for each term in the objective (21) and set them as

α = 0 . 3 , μ = 0 . 05 , γ = 8 . 1 to understand the influence of the three

cost components on the overall provisioning cost. They were cho-

sen to give higher importance on the DC-VN mapping cost, fol-

lowed by the bandwidth cost and finally, by the energy consump-

tion cost, without any one of them being delegated to being an

insignificant cost. 

For our dynamic traffic engineering simulation, we first deter-

mined the warm-up time and then collected the data for a steady-

state region after the warm-up time. For each arrival rate, we

used 10 independent seeds and reported the results on the aver-

age value. We also computed the confidence interval and found

the 90% confidence interval to be approximately 5% in cost vari-

ation for low arrival rates to 2.5% for high arrival rates. 

5. Results 

The scope of the simulation study is to understand the fol-

lowing issues: (1) comparison of the optimization model and the

heuristic for dynamic traffic engineering, (2) service performance

impact due to service heterogeneity as identified through VH a 

and VR types of demands and answer the questions we raised in

Section 1 , and (3) reduction in power consumption due to our ap-

proach compared to the benchmarking when all server runs at its

maximum capacity (labeled as “no optimization”). 

The choice of the parameters in our study was motivated by the

set of questions we posed in Section 1 leading to formulating the

following two postulates: 

Postulate-1: We postulate that when the bandwidth demand

and the resources (per request) vary uniformly from an av-

erage value, the cost and the blocking would be higher com-

pared to when the bandwidth demand and resources for

each request are fixed. 

Postulate-2: We postulate that by taking three values for the re-

quested bandwidth h and CPU resource r , i.e., the tuple 〈 h,

r 〉 for different VN classes in increasing order, the VN class

with the lowest resource requirement would receive better

treatment (lower blocking and cost) by the network than

the other. In the following subsections, we discuss the three

broad scopes of our study while bringing up the postulates
as applicable. 
.1. Comparison between CPLEX and Heuristic 

The purpose of our first set of experiments was to validate the

erformance of the heuristic compared to the MILP solution ob-

ained using CPLEX. Indeed, we did not expect the MILP to scale

o large problem instances, but hoped that our heuristic would

rovide solutions that were reasonably close to the MILP solution

rom CPLEX. More specifically, we compared them over the entire

imulation duration for dynamic traffic engineering, not at a partic-

lar review point. For performance measures, we used the average

ost and average blocking over the simulation duration. 

Consider Case 1 first from Group-A, where the demands were

omogeneous (H). From Fig. 3 a, we observed that the maximum

ean deviation between the result obtained from CPLEX and the

euristic was 2.99% for the average cost of provisioning for Case-

. This deviation was observed when the network was 50% more

verloaded than the normalized request arrival rate to the network

or the existing resources. However, this deviation did not increase

s the load continued to go up, as we could see just a 1.75% de-

iation when the average arrival rate of the incoming traffic was

5% more than normalized arrival rate. From this figure, we note

hat the cost incurred from the solution by the heuristic is slightly

igher than the CPLEX solution. Now, if we look at Fig. 3 b, we

an find that the maximum mean deviation between the heuristic

nd CPLEX is 3.69% at the 75% overloaded condition. Overall, we

ote that the blocking caused by using CPLEX was slightly higher

han the heuristic at high overload. This can be understood by the

reedy nature of CPLEX at each review point in solving the MILP

roblem exactly. 

The pattern of this deviation can be further explained by con-

idering the fact that the actual requests which were blocked by

he heuristic and the MILP solution, might be different ones. In

ther words, the requests accepted by each approach would be

ifferent at a review point, meaning that their service durations

ould be different as well. Consequently, the residual bandwidth

nd resources available at future review points seen by the heuris-

ic and the MILP approach could be different; this further led to

equests blocked by the heuristic being different than the MILP

olution. That is, Fig. 3 a and b do not necessarily imply that the

euristic was better than CPLEX due to less blocking, but it rather

howed that the performance between CPLEX and the heuristic for

emand type H was almost similar in terms of average cost and

verage blocking. This observation is also true for the three indi-

idual cost constituents (bandwidth, energy consumption, and DC-

N mapping) as we can see from Fig. 3 c. 

Next we considered Case 2, where each VN had a different

andwidth and resource demand, labeled as type VH a . From Fig. 4 a

nd b, the maximum mean deviation between CPLEX and the

euristic is observed for VN class 3, which required additional re-

ources per request compared to the other two VN classes. Higher

esource requirements means high blocking for this VN class and

his difference widens as the load increases. Again, the deviation

n performance does not necessarily indicate that CPLEX would be

etter than the heuristic, or otherwise. Even though the maximum

verall blocking rate is 11.53%, the maximum blocking rate for VN

lass 3 is 19.11%, which illustrates the performance deviation in a

igh blocking (overloaded) situation. We found that the maximum

ifference in cost for the VN class to be 3.14%. From Fig. 4 c, we

lso note differences in the bandwidth cost for VN3 between the

euristic and CPLEX; in addition both the postulates are satisfied

egardless of whether CPLEX or the heuristic is used for this case. 

We now briefly comment on the computation time between

PLEX and the heuristic. For Case-1 and 2, we observe that our

euristic was approximately 240 × faster than CPLEX without

uch loss on the quality of the solution obtained in terms of cost

nd blocking. 
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Fig. 3. CPLEX (C) vs. Heuristic (H) for Case-1. 
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Fig. 4. CPLEX (C) vs. Heuristic (H) for Case-2. 
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Fig. 5. VH a vs. VR (Case-3). 
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.2. Service impact due to demand types VH a and VR 

In this subsection, we study the impact of traffic patterns, in

articular the cases of sets of heterogeneous requests (VH a , with

xed, but different resource requirements for each VN class), and

andom variations in the resource requirements within each class

VR) as listed in Case-3. We report results for the heuristic solu-

ion, since we have established its solution quality in the previous

ubsection. 

In Fig. 5 a b, we present how the cost and blocking varies re-

pectively for these two types of demands as the incoming load

ncreases. We found that there is little difference in blocking for

N-1 between Case-VH a and Case-VR. On the other hand, this dif-

erence is noticeable for VN-2, and quite prominent for VN-3 as

his class requires significantly more resources. In other words, the

N class for which the resource requirement for each request was

andomly distributed within a range had a high blocking rate com-

ared to the VN class having the same resource requirements for

ach request. The cost of providing connectivity for each VN cus-

omer is shown in ( Fig. 5 a). Naturally, the cost of provisioning VN-1

h  
s always the lowest, regardless of the arrival rate, due to the lower

esource requirements. Now, revisiting Postulates 1 and 2, we can

ee that our result satisfied both the postulates. We also plot the

andwidth cost for each VN as shown in Fig. 5 c and observe al-

ost the same behavior as in Fig. 5 a. 

.3. Cost and service impact for large topology 

We now move to Group-B of the study. We divide the study re-

orted in this section into two scenarios to address two sources of

otential bottlenecks in the system. In the first scenario, we inves-

igated how different VN classes were treated by the data centers

hen the servers’ processing capacity was the bottleneck—this is

abeled as Case-4 of Table 3 . To consider this scenario, we provided

bundant capacity to all links of the data centers to ensure that no

equest would face blocking because of not getting the sufficient

mount of bandwidth that is required by that request; rather, the

nly blocking possible in this scenario was due to the lack of server

esources. From Fig. 6 a, we see that the cost of VN3 was always

igher than the other two groups of VNs. However, the slope of in-
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crease in cost for VN3 started to reduce after the incoming traffic

load reached 1.3% of the normal load as the blocking rate exceeded

10% ( Fig. 6 b) for this class. However, for the other two classes, we

noticed a steady slope of increasing cost. 

We further observe that VN2, having the resource requirement

in between VN3 and VN1, and its cost and blocking are also at the

middle of these classes, presented in Fig. 6 a and b. From Fig. 6 b,

we can further observe that blocking for a customer class with

less resource requirements (like VN1) is always lower. Even with

a high traffic situation, the blocking rate for this class is less than

5%, where the blocking rate for VN2 and VN3 reached at around

10% and 18%, respectively. In Fig. 6 c, the bandwidth cost for each

VN class shows that there is a similar behavior to Fig. 6 a. 

Next, we investigated how the quality of service varied when

the primary source of the bottleneck was network capacity com-

pared to the server resources being the bottleneck, i.e., Case-5.

From Fig. 7 , we see that VN class 3 was more strongly affected

than the other two classes. Thus, customers having a greater band-

width requirement (i.e., VN 3), received worse treatment (more

blocking) in a network having less link capacity compared to other

types of customer classes having less bandwidth requirements, es-

pecially as the overload increases. 

Again, both postulates held. However, the level of impact was

different on the VN with the highest resource requirements de-

pending on where the bottleneck in the system was. 

Next, we tested the scalability of our framework using our

heuristic for a larger data center system than Cases 4 and 5 by

considering 8 entry points and 1600 servers in each data center;

recall that this is listed as Case-6 in Table 3 . We found that our

developed heuristic could find the solution for this large topology

as well. We present the average cost for each VN in Fig. 8 . We no-
iced that the pattern of this figure is nearly similar to demand

ype VH of Case-3 as shown in Fig. 6 a, and the postulates held. 

.4. Energy consumption 

Another aim of our work is to reduce energy consumption.

o understand how our approach helps to reduce energy con-

umption, we simulated two additional cases listed as Group-C in

able 3 . First, we considered the data center topology with four

ntry points for the small-scale problem of 16 servers in each data

enter. We considered two options. In the high frequency option

Case-7), we considered that the CPU of each server could run

t one frequency among ten different options, while in the low

requency option (Case-8), we reduced the number of frequency

ptions to understand how the energy consumption varied. From

ig. 9 and Table 8 , we clearly observe that our approach reduced

he energy consumption by 84.83% at the low arrival rate (the best

ase with 10 frequency options available: Case-7) to 66.81% at the

ighest arrival rate (at the worst case with low frequency options

vailable: Case-8), compared to if all servers were running at the

ighest frequency (labeled as “no optimization”). From Fig. 9 , and

able 8 , we further observed that our approach gained more re-

uction in energy consumption when the servers ran at more fre-

uency options. We also point out that energy consumption for

he low frequency options was more than the high frequency op-

ions, especially when the incoming traffic load was high. Hence, in

rief, the percentage of reduction in energy consumption achieved

hrough our approach depends on the granularity of available fre-

uency in which the CPU of the servers could run. 

Finally, to understand how much reduction in energy consump-

ion could be achieved through our approach for a large-scale
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Table 8 

Percentage in energy reduction achieved by our heuristic compared to no optimization. 

Normalized arrival rate (small-scale) 1 1.25 1.5 1.75 2 

Case-7: HFO 84.83% 81.17% 78.1% 75.16% 72.11% 

Case-8: LFO 82.58% 78.21% 74.56% 70.44% 66.81% 

Noramalized arrival rate (large-scale) 1 1.01 1.02 1.03 1.04 

Case-4 69.02% 63.58% 56.44% 48.45% 42.60% 
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Fig. 9. Comparison of energy consumption cost between Case-7 and Case-8, with 

energy optimization. 
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(Case-4). 
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roblem, we further considered Case-4 that consists of 800 servers,

entioned earlier in Table 3 , compared to no optimization. The

ndings are depicted in Fig. 10 and Table 8 . From Fig. 10 and

able 8 , we see that our approach reduced the energy consumption

o 69.02% of the maximum energy cost at low arrival rate to 42.6%

t the highest arrival rate compared to benchmarking with no op-

imization. The most significant factor to notice from this figure

s that the reduction in energy consumption was less compared to

ig. 9 . The reason behind this is that, in this case, we used the pro-

essing capacity of servers as the bottleneck. This means that all

he servers of the available data centers was in use at the highest

rrival rate. This ensures the maximum utilization of the servers’

rocessing capacity. In consequence, the energy consumption cost

ecame slightly higher than the result shown in Fig. 9 . However,

ow the energy consumption by the servers was far less compared

o no optimization. From these analyses, we can say that our ap-
roach can help design an energy efficient data center networking

ystem. 

.5. Summary of observations 

We now summarize the key observations: 

1. In a dynamic traffic engineering environment, our heuristic is

comparable to the MILP formulation using CPLEX in terms of

cost and blocking. Our heuristic is approximately 240 times

faster than CPLEX for small-scale problems and can be used for

large-scale problems. 

2. In general, the VN class with a higher resource requirement

faces significantly higher blocking as the arrival rate increases

while having a noticeably higher cost. A small random per-

turbation on the resource requirement of the VN class with

the highest resource requirement can have a noticeably dif-

ferent performance impact at a high arrival rate. This is even

though the average resource requirement is the same for both

VN classes. 

3. Blocking sharply increases at a much smaller overload for large-

scale problems than compared to the small-scale problems. This

behavior is consistent with a single-link loss system model

(without routing and server selection) that can be computed

with the Erlang-B blocking formula. The nonlinear concave be-

havior of Erlang-B blocking is well known as the load and ca-

pacity increase, impacting blocking, especially when the ser-

vices have heterogeneous bandwidth requirements; see [ 10 ,

Chapter 11] for a discussion. 

4. Our approach reduces energy consumption by 42% to 84% de-

pending on the granularity of the frequency options available

and compared to when the servers are running at the highest

frequency. 

. Related work 

Early research on data center networks investigated architec-

ural construction, operation and scalability of DCs [11–16] . Joint

M placement and routing for data center traffic engineering was

ddressed by Jiang et al. [17] . Similar to Jiang et al. [17] , we also

onsider our problem from a traffic engineering point of view but

e do not focus on VM placement; rather, we keep routing flex-

ble in such a way that no dedicated server is required to satisfy

emand from a particular VN. Any idle server is able to handle

he request from any VN tenant. To satisfy a particular request, a

erver is chosen based on the resource demand and available re-

ources of the server. Unlike their work, we take bandwidth guar-

ntee into consideration. The issue of multiple service classes with

eterogeneous requirements have been addressed for access con-

rol [18,19] ; however, they do not consider two-tuple demands nor

he implication of network routing. 

Different approaches of optimization have been addressed in

ifferent research papers. In [20] , a scheme has been proposed

o optimize both virtual machine placement and traffic flow rout-

ng through dynamic VM migration and programmable flow-based

outing. Xiang et al. [21] proposes an optimization technique to re-

uce both the latency and cost of data center. 
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Recently, much research has been done to increase the energy

efficiency of a data center network [22–27] . A new data center ar-

chitecture is presented in [23] and [24] . In [23] , authors proposed

a novel data center network architecture using optical multiple-

input multiple-output (MIMO) orthogonal frequency division mul-

tiplexing (OFDM) technology. To achieve high energy efficiency,

they used passive optical switch (PON) and parallel signal detec-

tion technology to detect multiple optical channels simultaneously

while using a single photodetector [24] . proposed a SDN based

Arrayed waveguide grating routers (AWGR) PON data center in-

terconnection design to improve energy efficiency. Different tech-

niques have been proposed in [22,25,26] and [27] to reduce the

energy consuption of a data center in the network level.Yang et al.

[22] talks about a solution to reduce energy consumption by us-

ing switch ports and link bandwidth optimally to avoid conges-

tions and balance the load to increase the transmission capacity

and save a significant amount of network energy in Data Center

Network. However, they didn’t consider optimizing energy in the

server level. An ILP formulation followed by a heuristic is pro-

posed in [25] to reduce the energy consumption in software de-

fined data center networks by activating the switches selectively

and scheduling multi-path routing carefully, according to the traf-

fic demands in data center. A routing scheme has been proposed to

reduce the energy consumption in the network level of data center

in [26] which selects the flows iteratively to consume the residual

capacities in the active nodes and allocate routes to flows based on

the distributions of nodes, residual capacities and flow demands.

A correlation-aware power optimization algorithm has been pre-

sented in [27] to dynamically combine traffic flows onto a small

set of links and switches to shut down as many network devices

as possible for reducing energy consumption. 

Qian and Medhi [28] discussed the servers’ operational cost op-

timization without taking data center architecture into considera-

tion. and they did not consider the on-demand model either. In [8] ,

authors presented a formulation to optimize the link cost in one

data center, while we consider connecting multiple data centers.

Unlike Owens and Medhi [8] , we take two factors into account,

which are energy consumption by the servers, and the DC VN map-

ping cost. In our earlier conference paper Maswood et al. [29] , we

combined three cost components (reducing link costs, power cost,

and the DC VN mapping cost) together and impose weight param-

eters on each of these components to reflect their relative impor-

tance. In this paper, we extended the optimization model to con-

sider requests that are not satisfied by explicitly introducing a set

of artificial variables along with penalty costs for requests not sat-

isfied. Furthermore, we now present a heuristic that can be used

in large-scale problems. A novel contribution beyond the state-of-

the-art is the dynamic nature of our model to provide on-demand

service considering north-south traffic and finding the optimal re-

source requirement to contain service blocking within a tolerable

range. Our model allows us to study service differences among dif-

ferent service classes identified through virtual networks. More-

over, we can also identify which servers are not used to serve the

VN requests at a particular time, which allows us to determine

servers in a lower power consumption mode. 

7. Conclusion and future work 

In this work, we presented a dynamic traffic engineering frame-

work for resource allocation due to north-south traffic in a multi-

location data center environment. We presented a novel MILP for-

mulation and alternately a heuristic that is solved in this frame-

work at each review point. Our approach is geared for enterprise

customers that require resource guarantees from data centers. 

We found that the MILP formulation is suitable for up to 32

servers. For higher traffic situation, our heuristic approach is much
ore suitable, and we tested and presented results for up to 3200

ervers. 

Our comprehensive study allowed us to answer a number of

uestions when resource requirements may vary for each request

s well as may differ between different customers. In general, we

bserved that VN customers with the lowest resource require-

ents face the lowest blocking as the traffic is increased in the

ystem. For VN customers with high resource requirement, block-

ng is significantly higher for heavy traffic. 

A key observation is that our approach significantly reduces en-

rgy consumption compared to servers running at the highest fre-

uency and it works better when we have more frequency options

o choose from at which a server is allowed to operate. In other

ords, more frequency options for a server means higher reduc-

ion in energy consumption. 

There are several future directions we wish to address. We do

ot allow partial fulfillment of a request if there is lack of sufficient

esources to fully consider a request. Furthermore, we plan to add

erformance evaluation on the loads to a data center based on its

eographical distance from different VNs. We also plan to explore

ifferent allocation policies so that service performance are com-

arable for different VN customer groups. 
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