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ABSTRACT

We consider the problem of allocating data center (DC) resources for cloud enterprise customers who
require guaranteed services on demand. In particular, a request from an enterprise customer is mapped
to a virtual network (VN) class that is allocated both bandwidth and compute resources by connecting
it from an entry point of a data center to one or more hosts while there are multiple geographically
distributed data centers to choose from. We take a dynamic traffic engineering approach over multiple
time periods in which an energy-aware resource reservation model is solved at each review point. For
the energy-aware resource reservation problem, we present a mixed-integer linear programming (MILP)
formulation (for small-scale problems) and a heuristic approach (for large-scale problems). Our heuris-
tic is fast for solving large-scale problems where the MILP problem becomes difficult to solve. Through a
comprehensive set of studies, we found that a VN class with a low resource requirement has a low block-
ing even in heavy traffic, while the VN class with a high resource requirement faces a high service denial.
Furthermore, the VN class having randomly distributed resource requirement has a high provisioning cost
and blocking compared to the VN class having the same resource requirement for each request although
the average resource requirement is same for both these VN classes. We also observe that our approach
reduces the maximum energy consumption by about one-sixth at the low arrival rate to by about one-
third at the highest arrival rate—this also depends on how many different CPU frequency levels a server
can run at.

© 2017 Published by Elsevier B.V.

1. Introduction

of the equipment in data centers are temperature sensitive and
cooling through air and water is necessary to keep the temperature

The increasing growth of cloud based applications such as video
streaming, web search, distributed file systems, scientific compu-
tations, software libraries and document collection made the data
centers (DC) a popular platform in the Internet world. Companies
such as Amazon, Google, Facebook, and Yahoo! routinely employ
data centers for storage, web services and large-scale computations
[1-3]. With the increase in demand, the size and number of DCs
are increasing day by day. Large-scale data centers are set up with
a large number of servers that are interconnected through routers,
switch, and high speed links [4]. Due to the growing usage of data
centers, the expenses of maintenance are also increasing. Power
consumption is a major concern in operating data centers as most
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within an acceptable limit. Moreover, operating the servers, routers
and switches also requires a huge amount of power. Data centers
in the USA consumed about 91 billion kilowatt hours annually in
2013 and are estimated to consume 140 billion kilowatt-hours of
electricity annually by 2020 [5]. Hence, reducing the energy con-
sumption of data centers has been a challenging research problem.
The ultimate aim behind designing a data center is reducing the
expenses while gaining the highest efficiency.

There has been a number of contributions so far to increase the
efficiency of data centers by better utilizing the server resources,
applying traffic engineering techniques to reduce the bandwidth
and other operational costs. Some of them [6,7] focus on energy
efficient resource provisioning using dynamic traffic engineering.
However, to our knowledge, no work has considered how both
compute resources at the end hosts and network resources inside
the data center are allocated to satisfy the request of virtual net-
work (VN) customers while minimizing both energy consumption
and bandwidth cost. Secondly, most work related to traffic engi-


http://dx.doi.org/10.1016/j.comnet.2017.04.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.04.042&domain=pdf
mailto:mmnt7@mail.umkc.edu
mailto:chris.develder@intec.ugent.be
mailto:edmundo@ic.unicamp.br
mailto:dmedhi@umkc.edu
http://dx.doi.org/10.1016/j.comnet.2017.04.042

M.M.S. Maswood et al./ Computer Networks 125 (2017) 90-102 91

neering of intra-DC networks consider east-west traffic, i.e., the in-
tra data center traffic between hosts. In our work, we focus instead
on enterprise customers’ requests that result in north-south traffic
in data centers requiring both network bandwidth and server re-
sources. In particular, we address serving different enterprise cus-
tomer groups using VNs at data centers through dynamic traffic
engineering by allocating both network bandwidth and processing
resources efficiently, while factoring in energy consumption. That
is, we consider the north-south traffic environment where each re-
quest consists of a two-tuple demand: one for data center network
bandwidth and the other for the processing demand at the end
hosts.

Our work has three notable contributions beyond the existing
work.

» For the dynamic traffic engineering problem, we present a
novel mixed-integer linear programming (MILP) formulation
that is solved at each review point to minimize a composite
objective that consists of bandwidth cost, energy consumption
cost and DC-VN mapping cost from a traffic engineering point
of view while satisfying the virtual network customers by us-
ing the minimum amount of resources from data centers. The
MILP formulation allows the flexibility that requests arriving at
a particular review point may be allocated to any of the avail-
able data centers; for the selected data center, it may use any
of the entry points for the north-south traffic at the north end,
and any of the hosts available at the south-end. Our formula-
tion also considers a penalty cost for a blocked request due to
the potential loss of revenue.

We present a heuristic as an alternative to solving the MILP for-
mulation to test the performance of our framework for more
realistic large scale data center networks. Our heuristic com-
pares favorably with the solutions obtained for the MILP formu-
lation for small-scale problems, and is fast to solve large-scale
problems.

We present an insight on how different classes of VN customers
are affected in terms of resource allocations with north-south
traffic in data centers. For instance, we address the following
questions: How does each VN class perform? Is there any dif-
ference in the level of satisfaction among different VN classes in
terms of cost and blocking, if so then by how much? By what
percentage can we reduce energy consumption? How does the
performance vary for different VN classes in a comparatively
large data center?

The rest of the paper is organized as follows. In Section 2,
we present the optimization formulation of the traffic engineer-
ing problem to be solved at each review point. In Section 3, we
propose our heuristic. In Section 4, we summarize the simulation
setup and parameter details. Results are discussed in Section 5.
The related work is discussed in Section 6. Finally, in Section 7,
we summarize our concluding remarks and discuss potential fu-
ture work.

2. Model formulation

Our dynamic traffic engineering approach considers new re-
quest arrivals at random from customers, for which the resource
allocation (both data center network bandwidth and host re-
sources) is done at review point t € T, where T is a discrete tem-
poral window for dynamic traffic engineering consisting of review
points. The duration of a new VN request that uses the data cen-
ter is assumed to be random. Note that since the data center is set
up to serve VN customers, at any time instant, there are existing
VN tunnels and host resources allocated for prior requests. Thus,
any (micro-)workload that needs immediate access to resources,
that is, workload that cannot wait until the next review point, is
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Fig. 1. Data center topology [8].

assumed to be served by existing VN channels and host resources
assigned to the customers that were set up at earlier review points.
Since such immediate workloads are served through existing re-
sources, they are not modeled in our work. In other words, the
scope of our work is to consider new requests at review points that
are major requests requiring allocation of new bandwidths, vir-
tual network tunnels and new resources. For this, we first present
a mixed-integer linear programming (MILP) formulation in which
we attempt to accommodate as many requests as possible while
minimizing the resources requirement towards satisfying those re-
quests in order to reduce the overall cost. To illustrate our ap-
proach, consider the single data center network topology shown in
Fig. 1, which depicts just one site of the multi-location data cen-
ter that our model considers. The entry point in a data center is
then the north-end and the serving host is the south-end of the
north-south traffic. Our approach assumes that there is a central
controller that is responsible for solving the proposed optimiza-
tion model and setting up the allocations. For instance, this can
be accomplished by using a software-defined network (SDN) based
approach.

In our model, each request consists of 2-tuple (h, r) where h is
the bandwidth demand of the request and r is the processing re-
sources required from a serving host. Thus, at a particular review
point t, if a VN customer v € V has a request, the request tuple
is further represented by (h'k(t), r*(t)), which is to be served by
data center d € D. While the bandwidth demand needs to be satis-
fied by the capacity of the links within the data center | € L; from
the entry point i € I; to a server j € J4, the processing resources
must be satisfied by the servers’ available resources. We assume
that there is a given set of paths Pi’}d(t) from the entry point i to
server j, which could be potentially different at each review point t.

For energy consumption, we consider that every server can run
at a given set of CPU frequencies f € F. At each particular frequency,
a server works at a particular processing capacity a?f. A specific
amount of power bj!f is required to run the server at that fre-
quency. If we run the server at the highest frequency, it offers the
highest processing capacity, but consumes the highest amount of
power. All notations used in our model are summarized in Tables 1
and 2.

We now present the constraints in our formulation. First, one
DC out of the N DCs (D = {DCy, ..., DCy}) is at the most selected to
meet request k from VN v at review point t:

Sute) <1, kekK,(t).veV (1)
deD

Once a datacenter is responsible to fulfill the link bandwidth de-
mand request k from VN v, then this data center must be the one
from which the capacity is allocated for the bandwidth demand:

sty = kR (Hukd(t), ke K, (t),veV.deD (2)

Next, either the total link bandwidth demand must then be served
by the chosen data centers or if there is not enough bandwidth
to serve a request from a particular VN, then this request will be
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Table 1
Constants used in formulation.

Constants/Parameters:

D = Set of data centers, N = #(D)

Ja = Set of servers in one data center

I; = Set of entry points in one data center

V = Set of virtual networks

K, (t) = Set of requests from virtual network v at review point t

F = Set of frequencies in which server j can run

Lq = Set of links in one data ceneter

P}Jf“” (t) = Set of paths from entry point i to server j in datacenter d for
request k of VN v at review point t

M = A large positive number

& = A very small positive number

b4, = Power consumption in server j of data center d at frequency f

h¥(t) = Bandwidth demand for request k of VN v at review point t

rk(t) = CPU processing capacity demand for request k of VN v at review
point t

a?, = Capacity of server j of data center d at frequency f

cf(t) = Available capacity on link [ of data center d at review point t

‘Sf/jkpd; (t) = Link-path indicator: 1 if path p which is set up from entry point
i to server j uses link [ of data center d in order to satisfy request k
generated by VN v that comes to that entry point i of that data center d
at review point t to be served, 0 otherwise

B4(t) = Normalized cost of data center d at review point ¢

o, (4, y are weight parameters related to 3 optimization objectives

Table 2
Variables used in formulation.

Variables

u"d(t) = Binary decision variable to choose data center d to satisfy request
k from virtual network v at review point t

svkd () = Bandwidth allocation going to data center d for request k of
virtual network v at review point t

SUk(t) = Artificial bandwidth allocation for request k of virtual network v at
review point t

q”*(t) = Binary decision variable to choose real allocation for request k of
virtual network v at review point t

f”"(t) = Binary decision variable to choose artificial allocation assuming a
very high penalty cost for request k of virtual network v at review point
t

y;'jkd (t) = Bandwidth allocation for request k of VN v from entry point i to
server j of data center d at review point t

}7.’.’].’“1(0 = Binary decision variable to select request k of VN v to be
satisfied which comes to entry point i and served by server j of data
center d at review point t (this parallels y}’}‘d 1))

x;’}f(t) = Bandwidth allocation in path p, if request k comes to entry point
i of data center d is transferred to server j uses path p at review point t

z]’k" (t) = Bandwidth needed on link I of datacenter d for request k of VN v
at review point ¢

e}("d(t) = The requirement of CPU processing capacity from server j of
dataceneter d to satisfy the request k coming from VN v at review point
t

g:./}‘d(t) = Server resource (CPU processing capacity) allocation for request k
of VN v through entry point i to server j of data center d at review
point t

gYk(t) = Artificial server resource (CPU processing capacity) allocation for
request k of VN v at review point t

w‘jfj’ﬁd (t) = Binary decision variable to choose the optimum frequency f from
the range of available frequencies of server j of data center d to meet
the required demand of CPU processing capacity for request k of VN v
at review point t

labeled as an artificial allocation, s¥*(t), that allows us to keep a
count on also blocked requests:

D os™A(t) + 58 (t) = h*(t), keKy(t).veV (3)
deD

We force the decision of choosing the binary variable of artificial
allocation if a request cannot be served by limited resources:

S (t) < MFY(t), keK,(t),veV (4)

A request from a VN can only be considered for either a real allo-
cation or an artificial allocation but not for both at review point t:

Fr©) + %) =1,

If a request is considered for real allocation, the total link band-
width demand then must be served by the chosen real data cen-
ters:

Y s () = Wk (0)gk (). keK,(t).veV (6)
deD

keK,(t),veV (5)

The total amount of the link bandwidth demand from particular
VN v that will be served by data center d is the summation of the
bandwidth that is allocated from all chosen entry points i to all
chosen servers j of data center d at review point t:

DNy =sM(t), keKy(t).,veV.deD (7

iely jel
Next, we introduce a binary shadow variable 37?}‘5’({) corresponding

to y;’}“f (t) to track one-to-one mapping from entry point i to server

j at review point t by using a large positive number M and a small
positive number ¢&:

v <My, jels iely, keky(t), veV. deD (8)

yiat) = eyit), jely, iely, keKy(t), veV, deD (9)

Here, (8) and (9) together addresses the requirement that y is 1
when the corresponding variable y has a positive flow; otherwise,
y as 0 when y is 0.

The bandwidth that is allocated to a particular path from entry
point i to server j of data center d is given by using the path flow

variables xVkd:
iip

> 0 =0,

peRi(©)

jeja i€ly, keKy(t), veV, deD

(10)

If any bandwidth is allocated on particular path p to satisfy a por-
tion of the request k of bandwidth demand h' from any VN v, then
all the links associated with that path has to carry that portion of
demand hVk.

Therefore, we can determine the link flow on [ for tuple (v,
d):

Y Y sonio 240

iely jela pePyk (t)
lely, keK,(t),veV,deD (11)

while the total amount of bandwidth required in one link [ of data
center d to satisfy the requests of all VNs must not exceed the ca-
pacity of that link of this data center:

Z Z Z;}kd(t) < Cfl(t), le Ld, deD (12)

veV keK,(t)

Furthermore, we must determine whether a request can be served
with limited server resources or not. If there is a resource limita-
tion to serve a particular request from a VN at review point t, then
the binary variable to choose an artificial allocation for that request
will be 1. This condition is satisfied by the following constraints:

DN @) + 8t =), keKy(t), veV (13)
deD iely jely

gh(t) < Mf*(t), keky(t),veV (14)
DN @) =) gk ()., ke (), veV (15)

deD iely jeJy
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Next we address resource allocation of r¥k(t) to the appropriate tu-
ple (d, i, j), ensuring this in accordance with shadow variable .

g <My(t),  jels iely, keky(t), veV, deD (16)

gr(t) = ey(t),  jels iely, keKy(t), veV, deD (17)

Y ogit) =et(t), jely, keK(t), veV, deD (18)

iely

In (18), e'j"d(t) represents the total amount of resources required
from server j to satisfy a request from VN v at time ¢ that uses the
server coming through all entry points of a particular data cen-
ter. The total resources allocated to each request from a particular
server must be less than or equal to the available resources of that
server of a data center:

ed(t) < > afwhii(t), jels keky(t), veV, deD (19)
feF

Finally, a particular server j running at a particular frequency f can
produce a particular capacity a? I However, a server cannot run at
more than one frequency at a time:

]
> wid(t) <1, jely,deD keky(t),veV (20)
feF

To achieve the goal of the optimization problem, we consider
four cost components in the objective function: the network band-
width cost, the server resource cost, the data center location cost
and the penalty cost for those requests which are not satisfied
by the limited resources identified through the artificial allocation.
Furthermore, since resources are of different types, we take a util-
ity function-based approach by assigning weights to different com-
ponents that form the objective function. The first three sources
of costs are assigned different weight parameters, o, u, ¥, to un-
derstand the influence of each term on the overall decision, while
the penalty term is assigned a high penalty through parameter M.
Thus, our goal is to accommodate as many requests as possible and
this can be accomplished by minimizing the amount of resources
used. That is, the objective function can be written as:

mine Y Y > Y2t

deD veV keK, (t) leLy

DD D0 D biwi©

deD je] veV keK,(t) feF

3 Y Bouwke +MY. Y R (21)

deD veV keK,(t) veV keK,(t)

To summarize, our unified formulation addresses decision choices
at three different levels: data center, entry point, and then the des-
tination server. Secondly, we take power consumption into account
in determining the right frequency for operating a server. Finally,
we consider four cost components in the composite objectives.

3. Cost effective heuristic

The MILP problem is an NP-hard problem. Thus, due to the lim-
itation of the optimization model to generate optimal solutions
quickly for large scale problems in a dynamic traffic engineering
framework, we have developed a heuristic shown in Algorithm 1.
For the heuristic, we use the notations from Tables 1 and 2.

At a particular review point t, for all incoming requests with
bandwidth and resource requirements, this heuristic attempts to
obtain the best possible solution at this review point. The input for
this heuristic and the output returned by this heuristic are given
below:

Algorithm 1 Cost effective heuristic.

for all d € D do
update aff,f eF jeJi.deD
update ¢ 1 e Ly.d e D

end for

while V £ ¢ && D +# ¢ do
for all d € D do
forallicl; do
for all NS(j) € EP(i) do
cd = max(a?))
forallveV do
for all k € K, do
if cd > r’* then
for all f cF do
a‘}f = min(a?f) > rvk
end for
if cj? > a‘jf then
cd=cd—qd
M]/vkd _] 1 i
if =
vk —0
end if
end if
end for
end for
for all v €V served by NS do
use leftmost shortest path p Pi';"d, i—j
for all [ used in p do
if ¢! > h"* then
Z}/kd — C;i _ hvk

h'k =0
map — uv*d
V=V\k
end if
end for
end for
end for
end for
D=D\d
end for
end while

count_blocking=0
for all ve V do
for all k € K, do
if 'k == 0 && h"" == 0 then
return uukd vad zvkd
9 ]f 9 l
else
count_blocking ++
end if
end for
end for

DC related Input: Number of DCs (N), all paths available p
Pf;"d i — j, capacity of each link (c{l), capacity of each server at dif-

ferent frequencies (a‘]?f).

VN related Input: Resource requirement (r'¢) and bandwidth
requirement (h") to satisfy the requests at review point t.

Output: Near optimal solution to satisfy a request or report that
request as blocked.

The heuristic works on the first fit principle. At first, the heuris-
tic updates the existing capacity of resources based on the given
input discussed above. To find the best way of allocating resources,
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the heuristic picks one data center among all available data cen-
ters and continues to use it until either all servers or required
links to establish a path from an entry point to a server are ex-
hausted. Among all available entry points in that DC, the heuristic
starts with one entry point (EP) and continues to allocate requests
through this point until either all neighbor servers (NS) or all re-
quired links to establish a path from that entry point to an NS are
occupied. By neighbors, we mean that two edge switches are con-
sidered as the neighbor edge for each entry point; then, for a par-
ticular entry point, the servers which are connected to this neigh-
bor edge of the entry point are considered as a neighbor server
(NS) for this entry point. From all the available neighbor servers,
the heuristic picks a server from a neighbor server rack and con-
tinue to use the servers from that rack until all servers are occu-
pied. When all the servers from that rack are occupied or do not
find not enough capacity for any of the required links to establish
a path, the heuristic starts with another neighbor server rack. This
way the heuristic continues to allocate from the available resources
to satisfy all the requests arriving at a review point.

In our approach, a server’s goal is to fill as many requests as it
can. To do so, at first, this server starts with the maximum avail-
able capacity and continue to fit requests until it reaches the limit
of its capacity or all the requests are allocated with required com-
pute resources. While doing so, from all the available capacity of
that server, the heuristic tries to find the minimum capacity us-
ing which resource requirement from one request can be satisfied.
After finding the minimum resource requirement, this quantity is
reduced from the maximum available capacity. Through this, the
heuristic is able to determine the best capacity in which a server
should run. Furthermore, the heuristic gives us the information
that by running the server at this frequency, how processing ca-
pacity that is generated is fractionally allocated among different
requests. After being ensured about the resource fulfillment from
a server, the heuristic uses the leftmost shortest path to route all
the requests that can be satisfied by that server from the entry
point to the targeted server. Now, for all the requests served by
this server, once the shortest path is established, link capacity is
modified by reducing the required link capacity from the currently
available link capacity (from the given input in the review point)
for each link.

We illustrate the heuristic using Fig. 2. When a number of re-
quests arrives at a review point, each request is attempted in a
sequential order. The first request picks the leftmost data center
(where data centers are numbered left to right) and enters through
EP1 (if available). Then, it tries the leftmost shortest path, 1-5-13,
to reach server 1. if server 1 is not available, it tries server 2. In
the case of resources not available either at server 1 or 2, the re-
quest tries the path 1-6-14 to reach server 3 or server 4. In case
none of the paths or servers are accessible from EP1 to satisfy the
request, then an entry through EP2 is initiated to reach server 5,
6, 7, or 8. Thus, the attempts are made in the following order: 1-
5-13-s1, 1-5-13-s2, 1-6-14-s3, 1-6-14-s4, 2-7-15-s5, 2-7-15-s6, 2-8-
16-s7, 2-8-16-s8, and so on. This hunting process is continued un-
til the request is fulfilled by a data center, a server with a path

with the required bandwidth; consequently, the available band-
width and server resources are updated on the path and the server.
If after trying all data centers and paths and servers, the request
cannot not be satisfied, it is deemed blocked. It may be noted that
at any review point, a request may not be satisfied, but one next
in its sequence may be satisfied. This is because the next request
may have less bandwidth and/or resource requirements than the
previous one since we assume that arriving requests are heteroge-
neous.

4. Simulation study setup and parameter values

To conduct our study, we use the data center topology shown in
Fig. 1. We set a maximum of two data centers (N = 2) in our study.
Each data center is considered to be identical in this study; the
number of servers in each data center are the same and all links
inside the data center are set with the same capacity. For the MILP
model, we set Pi';d (t) = 4 paths from an entry point to a server in
which the bandwidth will be allocated to satisfy a specific request
for the duration of this request.

We divided our studies into eight cases that are clustered into
three groups as listed in Table 3 (H, VHq, VHp, and VR in this
table are described later in this section). The first group, Group-
A, consists of Case-1, Case-2, and Case-3, where the number of
servers in each data center is set to 16 and the capacity on each
link is set to 12, to reflect small-scale DCs. Comparing the re-
sults of the heuristic against the MILP formulation in a dynamic
traffic engineering environment was done for Case-1 and Case-
2. The MILP formulation used at each review point of the dy-
namic traffic engineering problem was solved using AMPL/CPLEX
(v 12.6.0.0). Beyond this size, CPLEX was found to be highly time
consuming to obtain even a near optimal solution by setting
a CPLEX option of node limits to 1000 for the branch-and-cut
method. In Case-3, we used the heuristic to compare two types of
demands.

The second group, Group-B, in Table 3 consists of Case-4, Case-
5, and Case-6 for large-scale DCs. In this group, we varied the
number of servers from 800 to 1,600, and capacity of each link be-
tween 500 and 1000 to understand a number of situations, which
were solved using the heuristic. Case-4 is to consider the situation
where the processing capacity is the bottleneck. Case-5 considers
the scenario when the link capacity is the bottleneck, while Case-6
is also is a case with capacity bottleneck while with a larger num-
ber of servers and entry points.

The third group, Group-C, in Table 3 consists of Case-7 and
Case-8 is to exclusively understand energy consumption. For this
study, it suffices to use a small-scale DC, but we change the fre-
quency options to understand the gain in energy consumption.

We considered V =3 classes of virtual networks to represent
three different groups of enterprise customers that generate re-
quests. Recall that a request is represented by the tuple (h, r).
We varied (h, r) to create different types of demands to run
the simulation for different cases as shown in Table 3; these are
summarized in Table 4. Type-H in Table 4 assumes that all VN
classes are homogeneous in terms of (h, r); this type was used in
Case-1. Type-VH, reflects heterogeneous VN classes different band-
width and processing demands, using (h',r1) = (3,0.3), (h2,1r2) =
(6,0.6), (h3,r3) =(9,0.9). VN-2 here requires twice as much re-
sources as VN-1 while VN-3 requires three times as much re-
sources as VN-1. This allows us to see how each VN class is treated
by the DC due to heterogeneity.

Type-VR is similar to VH, except that we allow variation of the
demand to be uniformly chosen at random within each VN from
a range, ie., (h',r!) = (unif{2,3,4},unif{0.2,0.3,0.4}), (h?,1?) =
(unif{5,6,7},unif{0.5,0.6,0.7}), (h3,713) = (unif{8,9, 10}, unif
{0.8,0.9,1.0}). The three types, type-H, type-VH,, and type-VR,
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Table 3
Summary of cases (Group-A: Case-1, Case-2, Case-3; Group-B: Case-4, Case-5, Case-6; Group-C: Case-7, Case-8).

Case Description # of servers Link eapacity
in each data center  of each link

Group-A
Case-1 CPLEX and heuristic for demand type H: small-scale (Frequency-SetA) 16 12
Case-2  CPLEX and heuristic for demand type VH,: small-scale (Frequency-SetA) 16 12
Case-3 Heuristic for demand type VH, and VR: small-scale (Frequency-SetA) 16 12
Group-B
Case-4  Heuristic for demand type VH, with Processing Capacity as Bottleneck: large-scale, 4 entry points (Frequency-SetB) 800 1000
Case-5  Heuristic for demand type VH, with Link Capacity as Bottleneck: large-scale, 4 entry points (Frequency-SetB) 800 500
Case-6  Heuristic for demand type VH,: large-scale, 8 entry points (Frequency-SetB) 1600 600
Group-C
Case-7 High Frequency Options: HFO (using demand type VH; and Frequency-SetB) 16 12
Case-8 Low Frequency Options: LFO (using demand type VH, and Frequency-SetC) 16 12
Table 4
Values of the general parameters used for this research for VN customers with different demand types.
Demand types Parameters Values
Type-H: Homogenous Bandwidth and CPU Processing Capacity Bandwidth Demand from VN-1, VN-2 and VN-3 6
for each request from all 3 VNs CPU Processing Capacity Demand from VN-1, VN-2 and VN-3 0.6
Type-VH,: Different Bandwidth and CPU Processing Capacity Bandwidth Demand-VN-1 3
demand for different VNs while the demand is fixed within Bandwidth Demand-VN-2 6
each VN Bandwidth Demand-VN-3 9
CPU Processing Capacity Demand-VN-1 03
CPU Processing Capacity Demand-VN-2 0.6
CPU Processing Capacity Demand-VN-3 0.9
Type-VR: Different Bandwidth and CPU Processing Capacity Bandwidth Demand-VN-1 unif{2, 3, 4}
demand for different VNs while with random within a fixed Bandwidth Demand-VN-2 unif{5, 6, 7}
range for each request from a particular VN Bandwidth Demand-VN-3 unif{8, 9, 10}
CPU Processing Capacity Demand-VN-1 unif{0.2, 0.3, 0.4}
CPU Processing Capacity Demand-VN-2 unif{0.5, 0.6, 0.7}
CPU Processing Capacity Demand-VN-3 unif{0.8, 0.9, 1}
Type-VH,: Similar to Type-VH, except of having different Bandwidth Demand-VN-1 3
values for CPU Processing Capacity demand Bandwidth Demand-VN-2 6
Bandwidth Demand-VN-3 9
CPU Processing Capacity Demand-VN-1 0.1
CPU Processing Capacity Demand-VN-2 0.5
CPU Processing Capacity Demand-VN-3 1
Table 5
Frequency-SetA: CPU frequencies, capacities and operational cost [9].
Frequency option 1 2 3 4 5 6 7 8
Normalized capacity 0.5385 0.6038 0.6692 07346 0.8 0.8645 0.9308 1
Power consumption (watts) 60 63 66.8 713 76.8 832 90.7 100
Table 6
Frequency-SetB: CPU frequency options, capacities and operational cost.
Frequency option 1 2 3 4 5 6 7 8 9 10
Normalized capacity 0.1 02 03 04 05 06 07 08 09 1

Power consumption (watts) 10 20 30 40 50 60 70 80 90 100

are used in the first group of studies (Case-1, Case-2, and Case-3) Table 7
listed in Table 3 Frequency-SetC: CPU frequency options, capacities and operational
R t.
Type-VH,, listed in Table 4 are also heterogeneous demand but o
with an wider gap for processing requirements between the three Frequency option 1 2 3
VN classes. This type was used in the rest of studies (Cases-4 to Normalized capacity 03 06 1
Case-8). Power consumption (watts) 30 60 100

For server frequencies, we used three sets of frequencies, la-
beled Frequency-SetA, Frequency-SetB, and Frequency-SetC shown
in Tables 5, 6, and 7, respectively. Frequency-SetA was used in
the small-scale DC study, Group-A (Case-1, Case-2, and Case-3).
Frequency-SetB was created for two purposes: to allow more fre-

quency options and to uniformly spread out normalized capacity;
this set was used for in the large-scale DC study, Group-B (Case-
4, Case-5, and Case-6). Finally, Frequency-SetC with less frequency
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option was created to understand the energy consumption gain
with larger number of frequency options compared lesser number
of frequency options; this is used in Group-C (Case-7 and Case-8)
for the energy consumption study.

All arrivals for the dynamic traffic engineering simulation were
generated randomly. Specifically, we assumed that the request ar-
rivals was a Poisson process and the service duration for the re-
quest arrivals was assumed to follow the negative exponential dis-
tribution with an average value of 5 time units measured in terms
of the number of discrete review points. Note that with an increase
in the arrival load, the system may not have sufficient capacity
to accommodate all requests. Thus, our simulation environment
also recorded any requests that were not satisfied by the system
by tracking the blocked requests to determine the blocking rate.
Through our initial experimentation, we attempted to find the ar-
rival rate for which the blocking was approximately 1%. We refer
to that arrival rate as a normal loaded network condition, and as-
signed the normalized load of 1.0. We then continued to increase
the arrival rate until we found the arrival rate for which the aver-
age blocking was approximately 10% to indicate highly overloaded
condition. Also, through our initial experimentation, we chose the
weight factors for each term in the objective (21) and set them as
o =03, =0.05y =8.1 to understand the influence of the three
cost components on the overall provisioning cost. They were cho-
sen to give higher importance on the DC-VN mapping cost, fol-
lowed by the bandwidth cost and finally, by the energy consump-
tion cost, without any one of them being delegated to being an
insignificant cost.

For our dynamic traffic engineering simulation, we first deter-
mined the warm-up time and then collected the data for a steady-
state region after the warm-up time. For each arrival rate, we
used 10 independent seeds and reported the results on the aver-
age value. We also computed the confidence interval and found
the 90% confidence interval to be approximately 5% in cost vari-
ation for low arrival rates to 2.5% for high arrival rates.

5. Results

The scope of the simulation study is to understand the fol-
lowing issues: (1) comparison of the optimization model and the
heuristic for dynamic traffic engineering, (2) service performance
impact due to service heterogeneity as identified through VHg
and VR types of demands and answer the questions we raised in
Section 1, and (3) reduction in power consumption due to our ap-
proach compared to the benchmarking when all server runs at its
maximum capacity (labeled as “no optimization”).

The choice of the parameters in our study was motivated by the
set of questions we posed in Section 1 leading to formulating the
following two postulates:

Postulate-1: We postulate that when the bandwidth demand
and the resources (per request) vary uniformly from an av-
erage value, the cost and the blocking would be higher com-
pared to when the bandwidth demand and resources for
each request are fixed.

Postulate-2: We postulate that by taking three values for the re-
quested bandwidth h and CPU resource r, i.e., the tuple (h,
r) for different VN classes in increasing order, the VN class
with the lowest resource requirement would receive better
treatment (lower blocking and cost) by the network than
the other. In the following subsections, we discuss the three
broad scopes of our study while bringing up the postulates
as applicable.

5.1. Comparison between CPLEX and Heuristic

The purpose of our first set of experiments was to validate the
performance of the heuristic compared to the MILP solution ob-
tained using CPLEX. Indeed, we did not expect the MILP to scale
to large problem instances, but hoped that our heuristic would
provide solutions that were reasonably close to the MILP solution
from CPLEX. More specifically, we compared them over the entire
simulation duration for dynamic traffic engineering, not at a partic-
ular review point. For performance measures, we used the average
cost and average blocking over the simulation duration.

Consider Case 1 first from Group-A, where the demands were
homogeneous (H). From Fig. 3a, we observed that the maximum
mean deviation between the result obtained from CPLEX and the
heuristic was 2.99% for the average cost of provisioning for Case-
1. This deviation was observed when the network was 50% more
overloaded than the normalized request arrival rate to the network
for the existing resources. However, this deviation did not increase
as the load continued to go up, as we could see just a 1.75% de-
viation when the average arrival rate of the incoming traffic was
75% more than normalized arrival rate. From this figure, we note
that the cost incurred from the solution by the heuristic is slightly
higher than the CPLEX solution. Now, if we look at Fig. 3b, we
can find that the maximum mean deviation between the heuristic
and CPLEX is 3.69% at the 75% overloaded condition. Overall, we
note that the blocking caused by using CPLEX was slightly higher
than the heuristic at high overload. This can be understood by the
greedy nature of CPLEX at each review point in solving the MILP
problem exactly.

The pattern of this deviation can be further explained by con-
sidering the fact that the actual requests which were blocked by
the heuristic and the MILP solution, might be different ones. In
other words, the requests accepted by each approach would be
different at a review point, meaning that their service durations
would be different as well. Consequently, the residual bandwidth
and resources available at future review points seen by the heuris-
tic and the MILP approach could be different; this further led to
requests blocked by the heuristic being different than the MILP
solution. That is, Fig. 3a and b do not necessarily imply that the
heuristic was better than CPLEX due to less blocking, but it rather
showed that the performance between CPLEX and the heuristic for
demand type H was almost similar in terms of average cost and
average blocking. This observation is also true for the three indi-
vidual cost constituents (bandwidth, energy consumption, and DC-
VN mapping) as we can see from Fig. 3c.

Next we considered Case 2, where each VN had a different
bandwidth and resource demand, labeled as type VH,. From Fig. 4a
and b, the maximum mean deviation between CPLEX and the
heuristic is observed for VN class 3, which required additional re-
sources per request compared to the other two VN classes. Higher
resource requirements means high blocking for this VN class and
this difference widens as the load increases. Again, the deviation
in performance does not necessarily indicate that CPLEX would be
better than the heuristic, or otherwise. Even though the maximum
overall blocking rate is 11.53%, the maximum blocking rate for VN
class 3 is 19.11%, which illustrates the performance deviation in a
high blocking (overloaded) situation. We found that the maximum
difference in cost for the VN class to be 3.14%. From Fig. 4c, we
also note differences in the bandwidth cost for VN3 between the
heuristic and CPLEX; in addition both the postulates are satisfied
regardless of whether CPLEX or the heuristic is used for this case.

We now briefly comment on the computation time between
CPLEX and the heuristic. For Case-1 and 2, we observe that our
heuristic was approximately 240 x faster than CPLEX without
much loss on the quality of the solution obtained in terms of cost
and blocking.
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5.2. Service impact due to demand types VH, and VR

In this subsection, we study the impact of traffic patterns, in
particular the cases of sets of heterogeneous requests (VHg, with
fixed, but different resource requirements for each VN class), and
random variations in the resource requirements within each class
(VR) as listed in Case-3. We report results for the heuristic solu-
tion, since we have established its solution quality in the previous
subsection.

In Fig. 5a b, we present how the cost and blocking varies re-
spectively for these two types of demands as the incoming load
increases. We found that there is little difference in blocking for
VN-1 between Case-VH, and Case-VR. On the other hand, this dif-
ference is noticeable for VN-2, and quite prominent for VN-3 as
this class requires significantly more resources. In other words, the
VN class for which the resource requirement for each request was
randomly distributed within a range had a high blocking rate com-
pared to the VN class having the same resource requirements for
each request. The cost of providing connectivity for each VN cus-
tomer is shown in (Fig. 5a). Naturally, the cost of provisioning VN-1

is always the lowest, regardless of the arrival rate, due to the lower
resource requirements. Now, revisiting Postulates 1 and 2, we can
see that our result satisfied both the postulates. We also plot the
bandwidth cost for each VN as shown in Fig. 5¢c and observe al-
most the same behavior as in Fig. 5a.

5.3. Cost and service impact for large topology

We now move to Group-B of the study. We divide the study re-
ported in this section into two scenarios to address two sources of
potential bottlenecks in the system. In the first scenario, we inves-
tigated how different VN classes were treated by the data centers
when the servers’ processing capacity was the bottleneck—this is
labeled as Case-4 of Table 3. To consider this scenario, we provided
abundant capacity to all links of the data centers to ensure that no
request would face blocking because of not getting the sufficient
amount of bandwidth that is required by that request; rather, the
only blocking possible in this scenario was due to the lack of server
resources. From Fig. 6a, we see that the cost of VN3 was always
higher than the other two groups of VNs. However, the slope of in-
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crease in cost for VN3 started to reduce after the incoming traffic
load reached 1.3% of the normal load as the blocking rate exceeded
10% (Fig. 6b) for this class. However, for the other two classes, we
noticed a steady slope of increasing cost.

We further observe that VN2, having the resource requirement
in between VN3 and VN1, and its cost and blocking are also at the
middle of these classes, presented in Fig. 6a and b. From Fig. 6b,
we can further observe that blocking for a customer class with
less resource requirements (like VN1) is always lower. Even with
a high traffic situation, the blocking rate for this class is less than
5%, where the blocking rate for VN2 and VN3 reached at around
10% and 18%, respectively. In Fig. 6¢, the bandwidth cost for each
VN class shows that there is a similar behavior to Fig. 6a.

Next, we investigated how the quality of service varied when
the primary source of the bottleneck was network capacity com-
pared to the server resources being the bottleneck, i.e., Case-5.
From Fig. 7, we see that VN class 3 was more strongly affected
than the other two classes. Thus, customers having a greater band-
width requirement (i.e.,, VN 3), received worse treatment (more
blocking) in a network having less link capacity compared to other
types of customer classes having less bandwidth requirements, es-
pecially as the overload increases.

Again, both postulates held. However, the level of impact was
different on the VN with the highest resource requirements de-
pending on where the bottleneck in the system was.

Next, we tested the scalability of our framework using our
heuristic for a larger data center system than Cases 4 and 5 by
considering 8 entry points and 1600 servers in each data center;
recall that this is listed as Case-6 in Table 3. We found that our
developed heuristic could find the solution for this large topology
as well. We present the average cost for each VN in Fig. 8. We no-
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ticed that the pattern of this figure is nearly similar to demand
type VH of Case-3 as shown in Fig. 6a, and the postulates held.

5.4. Energy consumption

Another aim of our work is to reduce energy consumption.
To understand how our approach helps to reduce energy con-
sumption, we simulated two additional cases listed as Group-C in
Table 3. First, we considered the data center topology with four
entry points for the small-scale problem of 16 servers in each data
center. We considered two options. In the high frequency option
(Case-7), we considered that the CPU of each server could run
at one frequency among ten different options, while in the low
frequency option (Case-8), we reduced the number of frequency
options to understand how the energy consumption varied. From
Fig. 9 and Table 8, we clearly observe that our approach reduced
the energy consumption by 84.83% at the low arrival rate (the best
case with 10 frequency options available: Case-7) to 66.81% at the
highest arrival rate (at the worst case with low frequency options
available: Case-8), compared to if all servers were running at the
highest frequency (labeled as “no optimization”). From Fig. 9, and
Table 8, we further observed that our approach gained more re-
duction in energy consumption when the servers ran at more fre-
quency options. We also point out that energy consumption for
the low frequency options was more than the high frequency op-
tions, especially when the incoming traffic load was high. Hence, in
brief, the percentage of reduction in energy consumption achieved
through our approach depends on the granularity of available fre-
quency in which the CPU of the servers could run.

Finally, to understand how much reduction in energy consump-
tion could be achieved through our approach for a large-scale
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Table 8

Percentage in energy reduction achieved by our heuristic compared to no optimization.
Normalized arrival rate (small-scale) 1 125 15 175 2
Case-7: HFO 84.83% 81.17% 78.1% 75.16% 7211%
Case-8: LFO 82.58% 78.21% 74.56% 70.44% 66.81%
Noramalized arrival rate (large-scale) 1 1.01 1.02 1.03 1.04
Case-4 69.02% 63.58% 56.44% 48.45% 42.60%
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Fig. 9. Comparison of energy consumption cost between Case-7 and Case-8, with
energy optimization.
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Fig. 10. Energy consumption cost with energy optimization and no optimization
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problem, we further considered Case-4 that consists of 800 servers,
mentioned earlier in Table 3, compared to no optimization. The
findings are depicted in Fig. 10 and Table 8. From Fig. 10 and
Table 8, we see that our approach reduced the energy consumption
to 69.02% of the maximum energy cost at low arrival rate to 42.6%
at the highest arrival rate compared to benchmarking with no op-
timization. The most significant factor to notice from this figure
is that the reduction in energy consumption was less compared to
Fig. 9. The reason behind this is that, in this case, we used the pro-
cessing capacity of servers as the bottleneck. This means that all
the servers of the available data centers was in use at the highest
arrival rate. This ensures the maximum utilization of the servers’
processing capacity. In consequence, the energy consumption cost
became slightly higher than the result shown in Fig. 9. However,
now the energy consumption by the servers was far less compared
to no optimization. From these analyses, we can say that our ap-

proach can help design an energy efficient data center networking
system.

5.5. Summary of observations

We now summarize the key observations:

1. In a dynamic traffic engineering environment, our heuristic is
comparable to the MILP formulation using CPLEX in terms of
cost and blocking. Our heuristic is approximately 240 times
faster than CPLEX for small-scale problems and can be used for
large-scale problems.

2. In general, the VN class with a higher resource requirement
faces significantly higher blocking as the arrival rate increases
while having a noticeably higher cost. A small random per-
turbation on the resource requirement of the VN class with
the highest resource requirement can have a noticeably dif-
ferent performance impact at a high arrival rate. This is even
though the average resource requirement is the same for both
VN classes.

3. Blocking sharply increases at a much smaller overload for large-
scale problems than compared to the small-scale problems. This
behavior is consistent with a single-link loss system model
(without routing and server selection) that can be computed
with the Erlang-B blocking formula. The nonlinear concave be-
havior of Erlang-B blocking is well known as the load and ca-
pacity increase, impacting blocking, especially when the ser-
vices have heterogeneous bandwidth requirements; see [10,
Chapter 11] for a discussion.

4. Our approach reduces energy consumption by 42% to 84% de-
pending on the granularity of the frequency options available
and compared to when the servers are running at the highest
frequency.

6. Related work

Early research on data center networks investigated architec-
tural construction, operation and scalability of DCs [11-16]. Joint
VM placement and routing for data center traffic engineering was
addressed by Jiang et al. [17]. Similar to Jiang et al. [17], we also
consider our problem from a traffic engineering point of view but
we do not focus on VM placement; rather, we keep routing flex-
ible in such a way that no dedicated server is required to satisfy
demand from a particular VN. Any idle server is able to handle
the request from any VN tenant. To satisfy a particular request, a
server is chosen based on the resource demand and available re-
sources of the server. Unlike their work, we take bandwidth guar-
antee into consideration. The issue of multiple service classes with
heterogeneous requirements have been addressed for access con-
trol [18,19]; however, they do not consider two-tuple demands nor
the implication of network routing.

Different approaches of optimization have been addressed in
different research papers. In [20], a scheme has been proposed
to optimize both virtual machine placement and traffic flow rout-
ing through dynamic VM migration and programmable flow-based
routing. Xiang et al. [21] proposes an optimization technique to re-
duce both the latency and cost of data center.
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Recently, much research has been done to increase the energy
efficiency of a data center network [22-27]. A new data center ar-
chitecture is presented in [23] and [24]. In [23], authors proposed
a novel data center network architecture using optical multiple-
input multiple-output (MIMO) orthogonal frequency division mul-
tiplexing (OFDM) technology. To achieve high energy efficiency,
they used passive optical switch (PON) and parallel signal detec-
tion technology to detect multiple optical channels simultaneously
while using a single photodetector [24]. proposed a SDN based
Arrayed waveguide grating routers (AWGR) PON data center in-
terconnection design to improve energy efficiency. Different tech-
niques have been proposed in [22,25,26] and [27] to reduce the
energy consuption of a data center in the network level.Yang et al.
[22] talks about a solution to reduce energy consumption by us-
ing switch ports and link bandwidth optimally to avoid conges-
tions and balance the load to increase the transmission capacity
and save a significant amount of network energy in Data Center
Network. However, they didn’t consider optimizing energy in the
server level. An ILP formulation followed by a heuristic is pro-
posed in [25] to reduce the energy consumption in software de-
fined data center networks by activating the switches selectively
and scheduling multi-path routing carefully, according to the traf-
fic demands in data center. A routing scheme has been proposed to
reduce the energy consumption in the network level of data center
in [26] which selects the flows iteratively to consume the residual
capacities in the active nodes and allocate routes to flows based on
the distributions of nodes, residual capacities and flow demands.
A correlation-aware power optimization algorithm has been pre-
sented in [27] to dynamically combine traffic flows onto a small
set of links and switches to shut down as many network devices
as possible for reducing energy consumption.

Qian and Medhi [28] discussed the servers’ operational cost op-
timization without taking data center architecture into considera-
tion. and they did not consider the on-demand model either. In [8],
authors presented a formulation to optimize the link cost in one
data center, while we consider connecting multiple data centers.
Unlike Owens and Medhi [8], we take two factors into account,
which are energy consumption by the servers, and the DC VN map-
ping cost. In our earlier conference paper Maswood et al. [29], we
combined three cost components (reducing link costs, power cost,
and the DC VN mapping cost) together and impose weight param-
eters on each of these components to reflect their relative impor-
tance. In this paper, we extended the optimization model to con-
sider requests that are not satisfied by explicitly introducing a set
of artificial variables along with penalty costs for requests not sat-
isfied. Furthermore, we now present a heuristic that can be used
in large-scale problems. A novel contribution beyond the state-of-
the-art is the dynamic nature of our model to provide on-demand
service considering north-south traffic and finding the optimal re-
source requirement to contain service blocking within a tolerable
range. Our model allows us to study service differences among dif-
ferent service classes identified through virtual networks. More-
over, we can also identify which servers are not used to serve the
VN requests at a particular time, which allows us to determine
servers in a lower power consumption mode.

7. Conclusion and future work

In this work, we presented a dynamic traffic engineering frame-
work for resource allocation due to north-south traffic in a multi-
location data center environment. We presented a novel MILP for-
mulation and alternately a heuristic that is solved in this frame-
work at each review point. Our approach is geared for enterprise
customers that require resource guarantees from data centers.

We found that the MILP formulation is suitable for up to 32
servers. For higher traffic situation, our heuristic approach is much

more suitable, and we tested and presented results for up to 3200
servers.

Our comprehensive study allowed us to answer a number of
questions when resource requirements may vary for each request
as well as may differ between different customers. In general, we
observed that VN customers with the lowest resource require-
ments face the lowest blocking as the traffic is increased in the
system. For VN customers with high resource requirement, block-
ing is significantly higher for heavy traffic.

A key observation is that our approach significantly reduces en-
ergy consumption compared to servers running at the highest fre-
quency and it works better when we have more frequency options
to choose from at which a server is allowed to operate. In other
words, more frequency options for a server means higher reduc-
tion in energy consumption.

There are several future directions we wish to address. We do
not allow partial fulfillment of a request if there is lack of sufficient
resources to fully consider a request. Furthermore, we plan to add
performance evaluation on the loads to a data center based on its
geographical distance from different VNs. We also plan to explore
different allocation policies so that service performance are com-
parable for different VN customer groups.
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