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Abstract—Geo-distributed Data Centers (DCs) are increasingly
common in order to provide scalability for increasing compute
demands of modern applications. When multiple geo-distributed
DCs serve user requests, it is important to determine which
DC and server to select to fulfill the demand at minimum
cost, given that enough resources are available in terms of
e.g., CPU and bandwidth. This is a complex task since every
DC has different operational costs due to e.g. energy, carbon
emission, and bandwidth costs. In this paper, we develop a novel
mathematical optimization model that guides the decision maker
which DC to select, which server to use, and which DC gateway
and network path to use to route the user demand in order
to satisfy the time varying compute, bandwidth, and latency
demands. Our model is based on the concept of virtual networks,
which have different requirements in terms of e.g. latency, and
we model the queuing delay as a function of the traffic load.
Our extensive numerical evaluation, which is based on real-world
DC locations, their resource provision costs, and typical demand
patterns, shows how operational costs increase with the traffic
load, and we analyze the impact of different latency bounds on
the performance of different virtual networks.

Index Terms—Geo-distributed data centers; Energy efficiency;
Virtual networks; Dynamic resource management; QoS; Latency.

I. INTRODUCTION

There is a growing trend towards large scale and geo-
distributed cloud data centers (DCs) in order to support
enterprise customers who require virtual network (VN) ser-
vices in a reservation-oriented mode for both computation-
and communication-related resources. However, the operation
of such DCs is raising severe concerns about their power
consumption and carbon footprints. For example, all the DCs
distributed over the USA generated approximately 200 million
metric tons of carbon dioxide and were responsible for around
3% of the global power consumption in 2014 [1]. In conse-
quence, electricity costs dominate the overall operational costs
for big cloud providers such as Google and Microsoft [2].

To reduce operational costs, both the energy efficiency of
the servers inside DCs and the location-based price diversities
such as electricity costs, carbon taxes, resource provision costs,
etc. need to be considered. Given the heterogeneity of servers
in terms of power consumption and cost differences across
regions, the key idea [3] is to shift resource allocation (1) to
energy-efficient servers and (2) to locations associated with
comparatively lower operational costs. In addition to cost
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savings, DC operators also try to serve as many customers’
demands as possible while meeting Quality of Service (QoS)
requirements such as latency. For example, when a DC op-
erator allocates resources mostly from a less expensive DC
to multiple organizations or groups of customers, sharing
resources may result in reduced operational costs but may
adversely affect service times. Several issues like spatial
diversity of operational costs, available network infrastructure,
heterogeneity of servers and resource demand patterns have
an impact on the overall performance of the cloud, and
often performance metrics such as operational cost and QoS
contradict each other. Therefore, a flexible resource allocation
strategy is required that meets different business requirements.

Recently, researchers tackled the problem of resource allo-
cation for geographically distributed DCs to achieve different
objectives [4], [5], [6]. However, most of them consider east-
west traffic (intra DC traffic between hosts). On the contrary,
we focus on enterprise customers’ requests that result in
north-south traffic in DCs requiring both computational and
communication-related resources. We study the problem of
optimizing the operational cost of the dynamic, multi-cloud-
based infrastructures over consecutive time periods where
demand varies while ensuring QoS requirements. We aim at
managing resources efficiently for DCs with heterogeneous
servers and serving diverse request demand profiles for differ-
ent customer groups using different VN classes.

Our contributions are three-fold. First, we develop a mixed-
integer linear programming (MILP) formulation that optimally
allocates resources to customers while minimizing location
dependent costs such as carbon emission costs and resource
provision costs. Unlike the previous contribution [7], our
formulation explicitly considers idle power consumption of
the servers to reflect the heterogeneous nature of the servers’
power consumption. Further, a penalty cost is introduced in the
objective function to keep track of the requests that are blocked
due to a shortage of resources or not meeting the desired QoS.
Second, we link QoS of different VN customers with their
latency requirements. Our formulation considers both load-
independent propagation latency and load-dependent queuing
latency for the links. Finally, we perform an extensive nu-
merical evaluation of the proposed approach using real-world
DC locations, demand patterns, and resource provision costs,
which presents an insight in to the relationship among request
arrival rates, applications QoS requirements, and operating
costs of the cloud providers.

The remainder of the paper is structured as follows. Sec-



tion II summarizes the related works. In Section III, we first
present our system model for dynamic resource allocation in
geo-distributed DCs while in Section IV, we present the MILP
model. Sections V and VI present the setup for the numerical
evaluation and results of our analysis. Finally, Section VII
concludes the paper.

II. RELATED WORK

Several works address the problem of dynamic resource al-
location among geo-distributed DCs. [17] presented a detailed
survey on cloud resource scheduling techniques, and empha-
sized that resource scheduling in a geo-distributed environment
is a challenging task due to heterogeneity of servers, resources,
demands and their associated costs, and discussed the dif-
ficulty to solve this with traditional resource management
techniques in cloud environments. Towards optimizing energy
cost, instead of focusing on servers’ power consumption,
[18], [19], [20], [2], [21] focused on Geographical Load
Balancing (GLB) by exploiting the difference in electricity
cost due to location diversities. [19] identifies the importance
of utilizing both spatial and temporal diversity in electricity
prices and suggested to select a comparatively cheap DC to
allocate resources. However, they do not consider servers’
energy consumption and hence, may lead to comparatively
higher energy consumption. [19] formulated an optimization
model for minimizing the DCs electricity costs by considering
multi-electricity-market environment. However, they do not
consider bandwidth provision cost. [20] presented a scheduling
algorithm for distributing workload from the front end servers
to back end servers while reducing power costs. However, they
only consider delay-tolerant workloads. [21] suggested to use
a budget on monthly electricity bill to minimize the network-
related energy cost for DCs such as networking devices. They
presented an algorithm by dynamically dispatching requests
towards multiple DCs but during high workload only guarantee
QoS to the premium customers.

On the other hand, some works such as [4], [5], [6], [3]
illustrated the potential of balancing load among multiple DCs.
[4] proposed a fuzzy logic based load balancing algorithm
to reduce operational cost and increase renewable energy
consumption without having prior knowledge about future
demands. [5] proposed a scheduling approach to distribute
incoming workloads to multiple DCs based on local renewable
availability, carbon efficiency, and electricity prices. However,
it only considered propagation latency, and didn’t consider
any strict QoS requirements. [6] proposed a load balancing
architecture for geo-distributed cloud considering service delay
for the applications. The authors proposed to use a traffic
migration strategy when a DC gets overloaded. However,
the architecture is just a prototype and still requires proper
implementation. [3] addressed the GLB problem but with
heterogeneity issues such as DCs are constructed with hetero-
geneous servers and workload are heterogeneous. However,
the authors didn’t consider the network topology for the DCs.
A closely related but slightly different model is presented in
[15], where a hierarchical approach is proposed to combine
both inter-DC and intra-DC request routing. However, it only

exploits the routing problem and does not consider the three-
tier network design within a DC. In our previous work [7],
we proposed a MILP model for dynamic traffic engineering
which allocates resource optimally to VN customers in a multi-
location DC environment. However, the model in [7] does not
keep track of the blocked requests, does not consider carbon
emission taxes and is not able to handle latency requirements.

In contrast to the related works presented above, we con-
sider the DC with full network topology to allocate net-
work resources such as bandwidth to the customers. Further,
in our approach each request comes with three attributes,
where the first two define computational and network resource
demands and the last one defines the maximum tolerable
delay. Furthermore, regarding operational costs of the DCs,
we consider three different components due to carbon tax,
power consumption of the severs and bandwidth provision. In a
concurrent work [22], we focused on proportional distribution
of load among geo-distributed DCs, while this work focuses
on maximum tolerable delay as a QoS constraint.

III. SYSTEM MODEL AND ASSUMPTIONS

Our proposed approach aims for a joint DC, gateway, path,
and server selection for dynamic request scheduling among
geographically distributed DCs. Each request consists of a 3-
tuple 〈r,h, ψ̂〉 and has a specific duration, where r denotes
the computational requirement, h the bandwidth demand,
and ψ̂ the latency bound (upper bound on the sum of the
delays associated with the links used to fulfill a request).
Requests arrive dynamically and the proposed system allocates
resources in a DC where the DC and server are jointly selected
to minimize costs including location based carbon tax, servers
power cost, and resource provision cost. Resource allocation
decisions are updated optimally at each review point t ∈ T ,
where T is a discrete temporal window consisting of review
points. As DCs are aimed for serving VN customers, at any
time instant, VN tunnels (a set of links from the DC entry
point towards the server) and server resources are reserved
for serving prior requests. Therefore, any (micro-)workload
that needs instant access to resources can be fulfilled through
existing VN tunnels and server resources that are already
allocated at earlier review points and still active.

From a set of D DCs in distinct geographical regions,
each DC d is equipped with Jd number of servers and Ld
number of links to satisfy the compute and network demands.
Servers are heterogeneous in terms of the power consumption
model and run at a particular frequency f ∈ F to provide a
particular processing capacity denoted by ad

j f . Hence, power
consumption of every server depends on two factors, the load
independent idle consumption (ζ d

j ) and the load dependent
current operating frequency (bd

j f ). Further, every link has a
certain bandwidth capacity. The link delay is composed of
a static propagation delay, which depends on the length of
the link and a dynamic queuing delay, which depends on the
current traffic on the link and the buffer size. The average
queuing latency for the link l can be approximated by the



TABLE I: Input Parameters Used in the Formulation

Input Parameters:
D = Set of data centers, N = #(D)
Jd = Set of servers in data center d
Id = Set of entry points in data center d
V = Set of virtual networks
F = Set of frequencies in which server j can run
Ld = Set of links in data center d
K = Set of line segments of the convex delay curve
Pvd

i j (t) = Set of paths from entry point i to server j in DC d for VN v
M = A large positive number
ε = A very small positive number
ζ d

j = Power consumption of idle server j of DC d
bd

j f = Power consumption in server j of data center d at frequency f
hv(t) = Bandwidth demand for VN v at review point t
rv(t) = CPU processing demand for VN v at review point t
ad

j f = Capacity of server j of data center d at frequency f
cd

l (t) = Available capacity on link l of data center d at review point t
φ

d
l = A fixed constant propagation delay of link l of data center d

φ̂ d
l = Maximum queuing delay of link l of data center d

ψ̂v(t) = Maximum allowable latency for VN v at review point t
δ vd

i jpl(t) = Link-path indicator: 1 if path p from i to j uses l of DC d for
VN v at review point t, 0 otherwise
ρ

d
l (t) = Utilization of link l in DC d at previous review point t

θ 1
k ,θ

2
k = Coefficients of the linear function that approximate the convex

delay curve for kth line segment
β d = Normalized cost of data center d due to carbon emission tax
Ωvd = Bandwidth pricing per request from VN v served by DC d
α,µ,γ = weight parameters related to 3 optimization objectives

M/M/1/K queuing system as follows [8]:

dl =
x
b · (1+ k · ( x

b )
k+1− (k+1) · ( x

b )
k)

x
e · (1−

x
b ) · (1− ( x

b )
k)

(1)

where k, b, and e denote the buffer size, the link capacity, and
the average packet size, respectively. Furthermore, the entry
points Id to DC d are at the north end and the servers are
at the south end of the north-south traffic. There are a Pi j(t)
available paths from the entry points to the servers, which can
be different at the review point t. Additionally, our approach
allows for dividing the different enterprise customers groups
using VN classes, v ∈V depending on their demands.

The proposed approach is based on several assumptions.
First, the bandwidth demands can be split and routed over
multiple paths. Second, one central controller is used to run the
optimization model at each review point to allocate resources
to the consumers. For instance, a software-defined network
(SDN) based approach can be applied, where traffic can be
load balanced on a subflow level [9]. Third, as the queueing
delay is nonlinear, a piecewise linear (PWL) approximation
is applied to estimate the delay curve (1) [10]. The notations
used are summarized in Tables I-II.

IV. MATHEMATICAL FORMULATION

In this section, the optimization model for the dynamic
scheduling problem is presented. First, at most, only one DC
out of the N DCs can be selected to meet the request for a
VN v at review point t:

∑
d∈D

uvd(t)≤ 1, v ∈V (2)

For the given DC, to satisfy the bandwidth demand from a VN,
the DC must ensure bandwidth requirements for that VN:

svd(t) = hv(t)uvd(t), v ∈V,d ∈ D (3)

TABLE II: Decision Variables Used in the Formulation

Decision Variables:
uvd(t) = Binary variable to choose DC d for VN v at review point t
svd(t) = Bandwidth allocation from DC d for VN v at review point t
s̃v(t) = Artificial bandwidth allocation for VN v
qv(t) = Binary variable to choose real allocation for VN v
f̃ v(t) = Binary variable for artificial allocation with penalty for VN v
yvd

i j (t) = Bandwidth allocation for VN v from i to j of DC d
ỹvd

i j (t) = Binary variable that parallels yvd
i j (t)

xvd
i jp(t) = Bandwidth allocation on path p form i to j, if used by VN v

zvd
l (t) = Bandwidth needed on link l of DC d for VN v

z̃vd
l = Binary variable to indicate if link l of DC d is used by VN v

ũd
l (t) = Binary variable to indicate if link l of DC d is used

ρd
l (t) = Utilization of link l of DC d at review point t

φ vd
l (t) = Total link delay of a request from VN v for using link l of data

center d
τ

d
l (t) = Queuing delay of link l of data center d due to buffering

τ̂d
l (t) = Total delay of link l of data center d

evd
j (t) = CPU processing capacity requirement from server j of datacenter

d to satisfy the request coming from VN v at review point t
gvd

i j (t) = Server resource (CPU processing capacity) allocation for VN v
through entry point i to server j of data center d at review point t
g̃v(t) = Artificial server resource (CPU processing capacity) allocation
for virtual network v at review point t
wvd

j f (t) = Binary variable to choose the optimum frequency f from the
range of available frequencies of server j of DC d to meet the required
demand of CPU processing capacity for VN v at review point t
w̃d

j f (t) = Binary variable to select the optimum frequency f in which
server j of DC d needs to run to meet the required CPU processing
capacity for all requests served by that server at review point t
ξ d

l (t) = This variable indicates the total utilization of link l of DC d
including an existing utilization at review point t
b̃(t) = This variable indicates the total idle server cost for all server used

Next, either the total link bandwidth demand must be served
by the chosen DC or if there is not enough bandwidth to
serve a request from a particular VN, then this request will
be chosen as an artificial allocation, s̃v(t), to keep a count on
blocked requests:

∑
d∈D

svd(t)+ s̃v(t) = hv(t), v ∈V (4)

A binary variable is used to indicate an artificial allocation if
a request cannot be served by limited resources:

s̃v(t)≤M f̃ v(t), v ∈V (5)

A request from a VN can only be considered for either a real
or artificial allocation but not for both at review point t:

f̃ v(t)+qv(t) = 1, v ∈V (6)

If a request is considered for a real allocation, the total link
bandwidth demand must be served by the chosen DC:

∑
d∈D

svd(t) = hv(t)qv(t), v ∈V (7)

The total amount of the bandwidth demand from VN v which
will be served by DC d, is the summation of the bandwidth
that is allocated from all chosen entry points i to all chosen
servers j of DC d at review point t:

∑
i∈Id

∑
j∈J

yvd
i j (t) = svd(t), v ∈V,d ∈ D (8)

Now, we introduce a binary shadow variable ỹvd
i j (t) corre-

sponding to yvd
i j (t) to track one-to-one mapping from i to j at t

using a large and small positive number M and ε , respectively:

yvd
i j (t)≤Mỹvd

i j (t), j ∈ Jd , i ∈ Id ,v ∈V,d ∈ D (9)

yvd
i j (t)≥ ε ỹvd

i j (t), j ∈ Jd , i ∈ Id ,v ∈V,d ∈ D (10)



The bandwidth allocated to path p from entry point i to server
j of DC d is given by using the path flow variables xvd

i jp:

∑
p∈Pvd

i j (t)

xvd
i jp(t) = yvd

i j (t), j ∈ Jd , i ∈ Id ,v ∈V,d ∈ D (11)

If any bandwidth is allocated on path p to satisfy a portion of
hv of a request from VN v, then all the links associated with
that path have to carry that portion of hv. Therefore, we can
determine the flow on link l for tuple 〈v,d〉:

∑
i∈I

∑
j∈J

∑
p∈Pvd

i j (t)

δ
vd
i jpl(t)x

vd
i jp(t) = zvd

l (t)

d ∈ D, l ∈ Ld ,v ∈V (12)

while the total amount of bandwidth required in link l of DC d
to satisfy the requests of all VNs must not exceed the capacity
of that link:

∑
v∈V

zvd
l (t)≤ cd

l (t), l ∈ Ld ,d ∈ D (13)

Constraint (14) is used to calculate the utilization of each link
l of each DC d. The utilization on each link is computed as
the sum of the demands forwarded through it and normalized
to the total capacity of the link.

ρ
d
l (t) = (∑

v∈V
zvd

l (t))/cd
l (t), l ∈ Ld ,d ∈ D (14)

(15) calculates the total utilization of link l of DC d at review
point t by summing up existing utilization from the previous
review point and current utilization.

ξ
d
l (t) = ρ

d
l (t)+ρ

d
l (t), l ∈ Ld ,d ∈ D (15)

(16) and (17) are used to identify the links which are used to
satisfy a request from VN v.

zvd
l (t)≤Mz̃vd

l (t), l ∈ Ld ,v ∈V,d ∈ D (16)

zvd
l (t)≥ ε z̃vd

l (t), l ∈ Ld ,v ∈V,d ∈ D (17)

(18) to (20) are used to identify all the links of available DCs
which are used to satisfy all requests at review point t.

ũd
l (t)≥ z̃vd

l (t), l ∈ Ld ,v ∈V,d ∈ D (18)

ũd
l (t)≤ ∑

v∈V
z̃vd

l (t), l ∈ Ld ,d ∈ D (19)

ũd
l (t)≤ 1, l ∈ Ld ,d ∈ D (20)

(21) and (22) are used to calculate the piecewise linear
queueing delay on the links using the coefficients θ 1

k and θ 2
k .

θ
1
k +θ

2
k ξ

d
l (t)≤ τ

d
l (t)+(1− ũd

l (t)) φ̂
d
l ,

k ∈ K, l ∈ Ld ,d ∈ D (21)

τ
d
l (t)≤ φ̂

d
l ũd

l (t), l ∈ Ld ,d ∈ D (22)

Constraint (23) is used to calculate the total delay of link l of
DC d which is the sum of the queuing latency and propagation
latency of that link.

τ̂
d
l (t) = τ

d
l (t)+φ

d
l , l ∈ Ld ,d ∈ D (23)

(24) to (27) are used to satisfy that only the delay of those links
are considered to calculate the total link delay of a request
which are used to satisfy that request.

φ
vd
l (t)≤Mz̃vd

l (t), l ∈ Ld ,v ∈V,d ∈ D (24)

φ
vd
l (t)≤ τ̂

d
l (t), l ∈ Ld ,v ∈V,d ∈ D (25)

φ
vd
l (t)≥ τ̂

d
l (t)− (1− z̃vd

l (t))M, l ∈ Ld ,v ∈V,d ∈ D (26)

φ
vd
l (t)≥ 0, l ∈ Ld ,v ∈V,d ∈ D (27)

(28) is used to calculate the total link delay for each request
which must be less than or equal to the maximum allowable
latency of that request.

∑
d∈D

∑
l∈Ld

φ
vd
l (t)≤ ψ̂

v(t), v ∈V (28)

Furthermore, we must determine whether a request can be
served with limited server resources or not. If there is a
resource limitation to serve a particular request from a VN at
review point t, then the binary variable to choose an artificial
allocation for that request will be 1:

∑
d∈D

∑
i∈Id

∑
j∈Jd

gvd
i j (t)+ g̃v(t) = rv(t), v ∈V (29)

g̃v(t)≤M f̃ v(t), v ∈V (30)

∑
d∈D

∑
i∈Id

∑
j∈Jd

gvd
i j (t) = rv(t)qv(t), v ∈V (31)

Next, we address resource allocation of rv(t) to the appropriate
tuple 〈d, i, j〉, in accordance with shadow variable ỹ.

gvd
i j (t)≤Mỹvd

i j (t), j ∈ Jd , i ∈ Id ,v ∈V,d ∈ D (32)

gvd
i j (t)≥ ε ỹvd

i j (t), j ∈ Jd , i ∈ Id ,v ∈V,d ∈ D (33)

∑
i∈Id

gvd
i j (t) = evd

j (t), j ∈ Jd ,v ∈V,d ∈ D (34)

In constraint (34), evd
j (t) represents the total amount of re-

sources required from server j to satisfy a request from VN v
at time t that uses the server coming through all entry points of
a particular data center. The total resources allocated to each
request from a particular server must be less than or equal to
the available resources of that server of a data center:

evd
j (t)≤ ∑

f∈F
ad

j f wvd
j f (t), j ∈ Jd ,v ∈V,d ∈ D (35)

Server j running at frequency f can produce capacity ad
j f .

However, a server can run only at one frequency option for
a request from VN v (36). (37) calculates the total capacity
required from server j of DC d to satisfy all the requests
forwarded to that server at review point t. (38) satisfies that a
server cannot run at more than one frequency. Constraint (39)
calculates the idle power consumption by server j of DC d.

∑
f∈F

wvd
j f (t)≤ 1, j ∈ Jd ,d ∈ D,v ∈V (36)

∑
f∈F

∑
v∈V

ad
j f wvd

j f (t) = ∑
f∈F

ad
j f w̃d

j f (t), j ∈ Jd ,d ∈ D (37)

∑
f∈F

w̃d
j f (t)≤ 1, j ∈ Jd ,d ∈ D (38)



∑
f∈F

∑
j∈J

∑
d∈D

w̃d
j f (t)∗ζ

d
j = b̃ (39)

To achieve the goal of the optimization problem, four cost
components are considered in the objective function: the
bandwidth, energy consumption, carbon emission based on
DC location, and the penalty cost for those requests which
are not satisfied by the limited resources identified through
the artificial allocation. Furthermore, since resources are of
different types, a utility function-based approach is taken by
assigning weights to different components from the objective
function. The first three sources of costs are assigned different
weight parameters, α,µ,γ , to understand the influence of each
term on the overall decision, while the penalty term is assigned
through parameter M. Thus, the goal is to accommodate
as many requests as possible by minimizing the amount of
resources used, leading to the following objective function:

minα ∑
d∈D

∑
v∈V

Ω
vd ∗ svd(t)+µ(∑

d∈D
∑
j∈J

∑
f∈F

bd
j f w̃d

j f (t)+ b̃(t))

+γ ∑
d∈D

∑
v∈V

β
duvd(t)+M ∑

v∈V
f̃ v(t) (40)

To summarize, our unified formulation jointly addresses deci-
sion choices at four different levels: data center, entry point,
which links to route the traffic over and then the destination
server. Secondly, we take power consumption into account in
determining the right frequency for operating a server and
traffic and link latency for determining the paths. Finally, we
consider four cost components in the composite objectives.

V. IMPLEMENTATION AND EVALUATION DESIGN

We used AMPL [12] and IBM ILOG CPLEX 12.6.0 [13] to
solve the multi-objective MILP at each review point. CPLEX
option of node limits is set to 10000 to obtain near optimal
solutions without consuming too much time.

A. Parameter Settings

In the evaluation, we use the DC topology shown in Fig. 1.
We use a maximum of three DCs (N = 3). Each DC is
considered to be identical in terms of the number of available
servers (16 in each DC) and number of links (56 in each
DC) inside the DC. While these values for the number of
servers are low by today’s DCs, we use these values since the
primary focus of our work here is to understand and reveal
relationship among the arrival rate of requests, applications
QoS requirements, and operating cost for cloud providers with
multiple DCs.

We consider the maximum capacity of each link inside
the DCs to be 1 Gbps with a propagation latency of 1 ms
and the maximum normalized capacity of each server is 1.

Fig. 1: Data Center Topology [11]

Regarding queuing delay, we linearize and approximate (1)
by using 7 line segments. However, every DC is constructed
from non-identical server classes with different specifications
on power consumption. We consider three different types of
servers, Dell R515, HP DL380 G8, and HP DL585 G7, and
their idle power consumption [14] is used (Table III). Each
server has 10 different frequency options to run with associated
capacity and power consumption. The normalized cost, βd of
using each DC is different as mentioned in Table III. This
cost depends on the carbon emission rate (CER). The DCs
that rely on nuclear and hydro power for electricity generation
have very low CERs compared to the DCs that use coal and
natural gas. For a detailed explanation, please see [15]. We
also assume that the DCs are located in Ontario, Britain, and
Kansas and their associated costs are denoted by β1, β2, and
β3, respectively [15].

We use 3 different VN classes. The bandwidth provision
cost per request for each VN class is different, and it also
depends on the DC from where the request is served. This
price list is presented in table IV, which is collected from the
real world trace [15]. Further, we set 4 paths Pvd

i j (t) from an
entry point to a server to allocate bandwidth in order to satisfy
a specific request for the duration of that request. In order to
have a balanced impact of different cost components on the
objective function, we scale up the bandwidth provision costs
(Ωvd) and carbon costs (βd) by multiplying by 100,000 and
25, respectively. Further, through initial experimentation, we
determined the weight factors for each term in the objective
function (40) and set them as α = 0.1,γ = 0.3,µ = 0.6 to
understand the influence of the three cost components on the
overall operational cost. They were chosen to give higher
importance on the energy consumption cost, followed by the
carbon emission cost and finally, bandwidth cost.

To quantify the effectiveness of our approach, demand
requests from customers need to follow a realistic pattern. We
used the traffic pattern generated for US core gateways net-
work by [16] and the requests’ arrival rate (demand intensity)
is divided into four slots (Table V) [16]. The request arrival
from different VN classes are random and follows a Poisson
distribution. Further, the service duration of the request arrival
is assumed to follow the negative exponential distribution with
an average value of 5 time units measured in terms of the
number of discrete review points [7]. If the request arrival rate

TABLE III: Values for Different Input Parameters

Number of DCs #(D) 3
Number of Servers in each DC #(Jd ) 16
Number of Entry points in each DC #(Id ) 4
Number of VN classes #(V) 3
ζ 1

j (DC 1), ζ 2
j (DC 2), ζ 3

j (DC 3) 213, 109, 258
Servers’ frequency options#(F) 10
Number of links in each DC #(Ld ) 56
Capacity of each link (cd

l ) 1
Propagation delay of each link (φ d

l ) 1
Carbon emission cost (β1,β2,β3) 0.1, 0.5, 1.0
Weight factors (α,γ,µ) 0.1, 0.3, 0.6

TABLE IV: Bandwidth Cost per Request ($/request)

Ontario (DC 1) Britain (DC 2) Kansas (DC 3)
VN 1 0.0010 0.0015 0.0012
VN 2 0.0008 0.0011 0.0009
VN 3 0.0006 0.0008 0.0007



TABLE V: Specifications of the Scenarios Used in This Study
Scenarios Requests (r,h, ψ̂) Demand Intensity

VN 1 VN 2 VN 3
Scenario 1 0.3, 0.45, 10 0.3, 0.45, 10 0.3, 0.45, 10 0.20, 0.45, 0.70, 0.80
Scenario 2 0.3, 0.45, 5 0.3, 0.45, 10 0.3, 0.45, 10 0.20, 0.45, 0.70, 0.80
Scenario 3 0.3, 0.45, 4 0.3, 0.45, 4 0.3, 0.45, 10 0.20, 0.45, 0.70, 0.80
Scenario 4 0.6, 0.9, 10 0.6, 0.9, 10 0.6, 0.9, 10 2.0
Scenario 4a 0.6, 0.9, 4 0.6, 0.9, 6 0.6, 0.9, 8 2.0
Scenario 4b 0.3, 0.8, 10 0.6, 0.9, 10 0.9, 1.0, 10 2.0
Scenario 5 0.6, 0.9, 10 0.6, 0.9, 10 0.6, 0.9, 10 2.0

is too high, the DCs may not have enough capacity to fulfill
all demands. Thus, our approach keeps track of the blocked
requests to determine the blocking rate.

B. Scenario Setup

For evaluating our proposed approach, all the computations
are performed on an Intel i7-4770k CPU@ 3.40GHz machine
with 32 GB RAM. A total number of seven scenarios are inves-
tigated. In scenario 1, homogeneous requirements for all the
VN classes are generated, i.e., bandwidth, CPU demands, and
latency bound for all the VN classes are similar. In scenario
2, we lowered the latency bound for VN class 1. In scenario
3, we further reduced the limit on the worst case latency for
both VN classes 1 and 2. The goal of scenario 2 and 3 is to
investigate the impact of strict latency bounds on operational
costs of DCs. In scenario 4, we used a higher demand intensity
and also increased both compute and bandwidth demands for
all VN classes. The focus of this scenario is to reveal the
cost and blocking relation under heavy demand. Further, we
extended scenario 4 in two directions to explore the impact of
heterogeneity on the proposed resource allocation scheme. In
the first extension (scenario 4a), heterogeneity is introduced in
terms of latency bound, i.e., different VN classes have different
upper bounds on their tolerable latency. As a second extension
(scenario 4b), heterogeneity is added by setting different
resource requirements for different VN classes. Finally, in
order to investigate the impact of the heterogeneous server type
together with DCs’ location cost, we have interchanged the
server types between the first and second DCs in the scenario
5. Table V summarizes all the scenarios used in our study.
For all the experiments, we first determined the warm-up time
and then collected the data for a steady-state region after the
warm-up time. Further, for each demand intensity, we used 10
independent seeds and reported the average value.

VI. NUMERICAL RESULTS

A. Cost Analysis for Homogeneous Resource Requirement

The goal of scenario 1 is to understand how the allocation
cost changes with increasing demand intensity. From Fig. 2,
we observe that the cost increased significantly, approximately
500%, when the demand intensity increased from 0.2 to 0.7.
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Fig. 2: Demand Intensity Vs Total Cost for Scenario 1

0.20 0.45 0.70 0.80
Demand Intensity

0
10
20
30
40
50
60
70
80
90

100
110
120

Co
st

3
11

21 22

2
7

14 15

1 5
11 12

VN1
VN2
VN3

Fig. 3: Demand Intensity Vs Per VN Cost for Scenario 1

TABLE VI: Avg. Latency of VNs and DCs for each Scenario

Scenario 1 (Max. Latency Bound: VN 1 → 10, VN 2 → 10, VN 3 → 10)
Demand Intensity VN 1 VN 2 VN 3 DC 1 DC 2 DC 3

0.20 4.71 4.91 4.60 0 4.74 0
0.45 5.64 5.48 5.43 0 5.52 0
0.70 6.13 5.82 6.27 0 6.07 0
0.80 6.36 6.66 6.82 0 6.61 0

Scenario 2 (Max. Latency Bound: VN 1 → 5, VN 2 → 10, VN 3 → 10)
0.20 3.83 5.08 4.72 0 4.55 0
0.45 3.97 6.16 5.90 0 5.25 0
0.70 4.03 6.21 6.57 0 5.71 0
0.80 4.19 6.98 6.93 0 5.86 0

Scenario 3 (Max. Latency Bound: VN 1 → 4, VN 2 → 4, VN 3 → 10)
0.20 3.10 3.35 5.34 0 3.93 0
0.45 3.45 3.44 6.51 0 4.37 0
0.70 3.49 3.46 7.14 0 4.66
0.80 3.57 3.49 7.69 0 4.87 0

Scenario 4 (Max. Latency Bound: VN 1 → 10, VN 2 → 10, VN 3 → 10)
2.00 7.66 8.59 8.00 8.02 8.80 7.41

Scenario 4a (Max. Latency Bound: VN 1 → 4, VN 2 → 6, VN 3 → 8)
2.00 3.73 5.27 6.72 4.88 5.59 4.69

Scenario 4b (Max. Latency Bound: VN 1 → 10, VN 2 → 10, VN 3 → 10)
2.00 8.39 8.72 9.16 8.34 9.11 7.88

Scenario 5 (Max. Latency Bound: VN 1 → 10, VN 2 → 10, VN 3 → 10)
2.00 8.28 7.78 7.82 8.88 7.88 7.44

Then, the cost increased slightly around 3.36% for the demand
intensity of 0.8. The nature of change in the operational cost
with respect to the demand intensity indicates that initially,
the cost increased sharply due to the fixed carbon cost and
lower utilization of the servers, but when the DC utilization
reached approximately 50% then cost increases slightly. For
demand intensity of 0.2, on average 2 servers were powered
on to accommodate all the requests, but it increased to 8 when
the demand intensity increases to 0.7 or 0.8. Among our three
considered cost factors that affected the overall operational
cost for a DC, energy contributed to the highest proportion
(around 42%), followed by the carbon cost (around 35%), and
the bandwidth provision cost (around 23%).

Fig. 3 shows the costs for different VN classes. The bars
illustrate the total cost for different levels of demand intensity
where as the bottom layers of the bars (stripped lines) show
the bandwidth costs. Even though all the VN classes are
homogeneous in terms of resource demand, the bandwidth
cost varies significantly. This is because the bandwidth pricing
scheme varies depending on the VN type and the DC where
the demand is allocated. The average cost for VN 1 is always
higher than the cost for VN 2 or 3 as the bandwidth price for
VN 1 is the highest. For all the VNs, although DC 1 and 3
offer a comparatively lower bandwidth price, all the demands
are still allocated to DC 2. Since, for the demand intensity
used in this scenario, DC 2 had enough resources to satisfy all
requests, no request is allocated to DC 1 or 3 as DC 2 is the
overall cheapest option. Therefore, the cost of different VN
classes with homogeneous requirements can vary because of
being served by a heterogeneous system environment. Finally,



TABLE VII: Average Number of Active Links and Link
Utilization of DCs for Different Scenarios

Scenario 1
Average Active Links Average Link Utilization

Demand Intensity DC 1 DC 2 DC 3 DC 1 DC 2 DC 3
0.20 0 8.80 0 0 46.07% 0
0.45 0 19.65 0 0 47.99% 0
0.70 0 31.98 0 0 48.45% 0
0.80 0 32.13 0 0 49.84% 0

Scenario 2
0.20 0 8.01 0 0 48.02% 0
0.45 0 14.17 0 0 49.40% 0
0.70 0 23.23 0 0 51.07% 0
0.80 0 29.53 0 0 52.85% 0

Scenario 3
0.20 0 7.10 0 0 49.51% 0
0.45 0 13.68 0 0 51.56% 0
0.70 0 21.09 0 0 53.36% 0
0.80 0 26.53 0 0 54.68% 0

Scenario 4
2.0 46.93 52.73 40.93 80.02% 81.39% 74.23%

Scenario 4a
2.0 40.93 48.65 30.56 86.57% 88.53% 84.64%

Scenario 4b
2.0 48.24 54.19 39.51 78.12% 79.31% 78.07%

Scenario 5
2.0 54.08 49.78 37.55 79.87% 78.75% 75.62%

from these two figures, we observe that cost increases non-
linearly with increasing demand intensity.

B. Impact on Latency

Here, we investigate how the avg. VN latency changes with
increasing demand intensity. Demand intensity is increased
until the system gets so overloaded that it cannot accommodate
all the requests. We analyze the impact of introducing stricter
latency bounds . Additionally, different latency bounds or
different resource demands for different VN classes allow
us to understand the impact of heterogeneity in our resource
allocation scheme. The results of are summarized in Table VI.

For scenario 1, we observe that the avg. latency for all VN
classes increases non-linearly with increasing demand inten-
sity and follows a pattern similar to the previously discussed
cost of resource allocation. Here, all three VN classes have
a similar latency bound of 10, and their average latency is
also close to each other. This further implies that no VN class
is penalized in terms of latency due to sharing network paths
with other VN classes. In fact, the most common tendency is to
allocate the shortest path to all of the VNs, which may in turn
create unexpected latency for some VNs because of network
congestion. However, using splittable routing and distribut-
ing traffic, we can maintain a balance for network resource
allocation among different VN customers. For instance, for a
demand intensity of 0.2, the average latency for all VN classes
is 4.74 with a deviation of 0.15 and the latency shows a similar
behavior for all other demand intensities.

Next, in scenario 2, as we reduced the latency bound for
VN 1 from 10 to 5, we found the avg. latency always within
the bound for all demand intensities. However, this had an
impact on the avg. latency of the other two VN classes. For
instance, the avg. latency for VN 1 was 4.05 for all demand
intensities which reduced approximately 29% compared to the
scenario 1, but the avg. latency for VN 2 and VN 3 increased
around 7% and 5%, respectively. However, the avg. latency
of all three VNs reduced slightly. In scenario 3, we decreased
the latency bound to 4 for both VN 1 and 2, which restricted

the average latency for VN 1 and 2 within 4. However, the
avg. latency for VN 3 increased more compared to scenario 1
and 2, which is comparatively 16% and 11% higher. Further,
the avg. latency for all VN classes was lowest among all these
three scenarios. For these scenarios, the avg. latency in DC 1
and 3 was 0, as all the requests was served by DC 2 because
of its cheapest allocation cost. When a VN class has more
strict latency bound, the solution forces other VNs to increase
their avg. latency, since traffic related to the higher latency VN
classes is routed over different paths to reduce traffic volume
on the path used by low latency VN classes.

In scenario 4, the demand intensity is increased to 2.0.
Here, all three DCs were used to satisfy customers’ requests.
The key findings are: (i) the VN wise avg. latency is much
higher compared to the previous scenarios as the demand
intensity is 2.5 times higher than the max. intensity for the
previous scenarios; (ii) the avg. latency is showing a downward
trend from the cheapest DC to the most expensive one as the
cheapest DC is comparatively congested because of admitting
higher number of requests. For instance, the avg. latency for
DC 2 is 8.80, which has the lowest allocation cost, then the
latency decreases approximately 9% for DC 1 (next cheaper
DC), and around 16% for DC 3 (the most expensive one).
Further, scenario 5 showed the same behavior as scenario 4.
Because of exchanging server types between DC 1 and DC
2, now DC 1 is the cheapest option in terms of operational
cost and has experienced the highest latency of 8.88. When
different VN classes have different max. tolerable latency
(scenario 4a), the resource allocation scheme satisfied all the
latency bounds for the VNs. Thus, VN 1 experienced the
lowest avg. latency whereas VN 3 faced the highest. However,
the comparatively lower latency for scenario 4a than 4 can
be explained by the higher blocking rate of 4a (see Section
VI-D). Finally, when the heterogeneity is imposed on VNs
in terms of resource requirements (scenario 4b), all the VN
classes experienced the highest latency. Thus, heterogeneity
has an impact on the resource allocations scheme and further,
traffic of all VN classes are routed over higher number of links
as they have higher tolerable latency bounds.

C. Average Number of Active Links and their Utilization

The impact of demand diversity, latency bounds and op-
erational costs on link utilization and number of active links
is summarized in Table VII. In scenario 1, we observed that
the number of active links and their utilization increased non-
linearly with demand intensity where the utilization increased
slowly. As the demand intensity increases, the latency bounds
coupled with our splittable flow routing model require more
links to activate until the latency bound is reached, which then
requires more load balancing and thus more links to activate.

For scenario 2, when the max. tolerable delay for VN
1 is reduced, we observe that the avg. number of links is
also reduced. However, the avg. link utilization is increased
compared to s-1. In the topology, there are several possible
paths from entry points to servers and we use a splittable
flow routing. If latency bounds of some VNs are more strict
(e.g. VN 1), less paths can serve the traffic under the stricter



TABLE VIII: Blocking Rate

Scenario Overall VN 1 VN 2 VN 3
4a 7.5% 11.15% 7.92% 3.47%
4b 8.75% 5.26% 7.15% 13.83%

latency bounds (the low latency traffic will be more likely
routed along the shortest hop paths). Consequently, the link
util. increases as less links need to be activated. The same
behavior is visible for scenario 3. Here, the average number
of active links is the lowest and the average link utilization
is the highest among these three scenarios. As we continue
to reduce the maximum tolerable delay for low demands, the
average number of active links reduces and their utilization
increases because adding extra links causes additional delay.

Once we increase the demands for scenario 4 and have a
less latency bound of 10 which is the same for all VNs, the
avg. used links and util. increases significantly. Also, since
DC 2 has the cheapest allocation cost, it serves the highest
number of requests and hence, the link util. is the highest for
this DC. In s-5, DC 1 has the highest number of used links
and utilization as it is the cheapest DC now. This implies that
our approach can successfully use the cheapest DC among all
available ones in order to reduce the resource provision cost. In
4a and b, some traffic cannot be admitted and blocked because
the latency bounds are already so tight for some VN traffic
that no available path is found to satisfy the required bound.

D. Impact of Demand Heterogeneity on Blocking Rate

As blocking we refer to a situation when a request does
not get enough resources to be satisfied both for compute and
network. In scenarios 1 to 3, the demand intensity is too low
to create any blocking. Therefore, to understand the impact
of blocking, we have analyzed the results of scenarios 4,
4a, and 4b, which are presented in Table VIII. In scenario
4, when all the VNs have similar resource demands and
latency bounds, we found an overall blocking rate of 4.50%.
In scenario 4a, where VNs are heterogeneous in terms of max.
tolerable delay, the overall blocking rate is 7.5% which is
significantly higher than scenario 4. Further, we notice that
the VN class with the lowest delay bound has the highest
blocking rate and vice versa. For instance, VN class 1 has
the most strict latency bound of 4 and hence, its blocking
rate is approximately 11.15%, while the blocking rate for VN
class 3 is the lowest of 3.47% due to the higher tolerable
latency of 10. Finally, in scenario 4b the VN classes are
heterogeneous in terms of resource requirement. Consequently,
it shows a higher blocking rate (overall 8.75%) compared to
the previous two scenarios. The VN class with the highest
resource requirements faces the maximum blocking rate and
the VN class with lowest resource requirements (VN 1) faces
the lowest blocking rate (5.26%). We notice that heterogeneity
has an impact on the resource allocation scheme in terms of
higher blocking rate which may lead to significant revenue
losses for the cloud providers. Additionally, the VN class
with the lowest resource requirement or with the highest
upper bound on worst case latency, has comparatively higher
admission rate to fulfill their resource demands.

E. Impact of Server Heterogeneity on Energy Consumption

In order to clearly identify the impacts of server types
on DCs’ operational cost, we have interchanged the servers
between DC 1 and 2 in scenario 5. In both scenarios (4 and 5),
resource requirements for all VNs are the same and the carbon
cost and the bandwidth cost of VNs are always lowest for DC
1. However, the energy efficiency of the servers, specially their
idle power consumption, influences the resource allocations.
For instance, in scenario 4, servers of DC 2 have on avg.
45% lower idle consumption than servers of DC 1 and hence,
allocate a higher number of requests. In this case, DC 2 has
on avg. 11 active servers, DC 1 and 3 has on avg. 10 and
6 powered on servers. On the other hand, scenario 5 shows
the opposite trend. For example, now, DC 1 has on avg. 11
active severs and DC 2 and 3 have 10 and 6 active servers,
respectively. When energy efficient servers are combined with
cheapest carbon cost and lowest bandwidth cost, the overall
operational cost for resource allocation becomes comparatively
cheaper. For instance, scenario 5 has 5% lower operational cost
compared to scenario 4 for the same resource demand.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we tackled the problem of allocating a given
workload in terms of a time varying compute and bandwidth
demands, to diverse geo-located DCs to minimize total costs
such as bandwidth costs, carbon taxes, etc. We presented a
novel MILP optimization model that is solved at each review
point of a dynamic traffic engineering environment to allocate
resources to the best servers over the best network paths while
maintaining a strict QoS constraint on maximum tolerable
latency and bandwidth capacity. We consider a fixed and a
variable delay due to the queuing caused by traffic routed over
the links and DC gateways. Through a systematic numerical
analysis, we show the dependency among resource require-
ment, resource availability, and blocking, for both homoge-
neous and heterogeneous resource requirements. We study
how the average number of links used and their utilization
varies as we reduce the latency bounds. We noticed that
bursty traffic resulted in denial of service (blocking) for several
requests under limited resources. This is an indicator for the
DC providers to be prepared for the temporal diversity of
the network load. We observed that our approach reduced the
provisioning cost by using the spatial diversity of bandwidth,
energy and carbon emission cost of geo-distributed DCs.

While our optimization model is too complex to optimize
the resource allocation in realtime, it serves as an important
benchmark against which any fast solution heuristic can be
compared against. In the future, we plan to develop a fast
online algorithm and study the behavior of a large-scale system
with several DCs that consist of many servers. Using our
scheme, we further plan to study how different performance
matrices vary for DCs with different architectures.
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